Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

a technology of pharmacological agents and formulations, applied in the direction of biocide, microcapsules, capsule delivery, etc., can solve the problems of human administration, inability to conventionally administer pharmaceuticals that are water-insoluble or poorly water-soluble, sensitive to acid environments in the stomach, etc., to reduce the incidence of severe hypersensitivity and anaphylactic reactions, reduce toxicities, and improve the effect of

Inactive Publication Date: 2015-04-16
ABRAXIS BIOSCI LLC
View PDF4 Cites 34 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The invention is a formulation of paclitaxel that improves the quality of life of patients receiving Taxol for the treatment of cancer. The formulation uses human serum albumin to bind Taxol and other drugs, which enhances the ability of the drugs to absorb onto the surface of particles. This results in a stable colloidal dispersion that can be stored for extended periods of time. The formulation also helps to reduce the side effects and toxic effects of Taxol treatment.

Problems solved by technology

When microthrombii (blood clots) of size greater than 10-15 microns are present in circulation, a risk of infarction or blockage of the capillaries results, leading to ischemia or oxygen deprivation and possible tissue death.
Pharmaceuticals that are water-insoluble or poorly water-soluble and sensitive to acid environments in the stomach cannot be conventionally administered (e.g., by intravenous injection or oral administration).
The poor aqueous solubility of Taxol, however, presents a problem for human administration.
Indeed, the delivery of drugs that are inherently insoluble or poorly soluble in an aqueous medium can be seriously impaired if oral delivery is not effective.
Such modifications, however, add to the cost of drug preparation, may induce undesired side-reactions and / or allergic reactions, and / or may decrease the efficiency of the drug.
The above techniques for the preparation of protein microspheres as carriers of pharmacologically active agents, although suitable for the delivery of water-soluble agents, are incapable of entrapping water-insoluble ones.
This limitation is inherent in the technique of preparation which relies on crosslinking or heat denaturation of the protein component in the aqueous phase of a water-in-oil emulsion.
Any aqueous-soluble agent dissolved in the protein-containing aqueous phase may be entrapped within the resultant crosslinked or heat-denatured protein matrix, but a poorly aqueous-soluble or oil-soluble agent cannot be incorporated into a protein matrix formed by these techniques.
Unfortunately, Taxol has extremely low solubility in water, which makes it difficult to provide a suitable dosage form.
Myelosuppression was dose-limiting, with 2 fatalities due to sepsis.
1263-1268, reported that it was difficult to determine a reliable overall incidence of hypersensitivity reactions, HSRs, because of the wide variations in Taxol doses and schedules used, and the unknown degree of influence that changing the infusion schedule and using premedication has on HSR incidents.
Further, concentration of Taxol in the infusion may also not make a difference since substantial numbers of patients had reactions to various small Taxol dosages.
Although it appears possible to minimize the side effects of administering Taxol in an emulsion by use of a long infusion duration, the long infusion duration is inconvenient for patients, and is expensive due to the need to monitor the patients for the entire 6 to 24-hour infusion duration.
These results however, have not been reproduced due to higher toxicity at these higher doses.
It is also desirable to eliminate premedication since this increases patient discomfort and increases the expense and duration of treatment.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
  • Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
  • Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof

Examples

Experimental program
Comparison scheme
Effect test

example 1

Preparation of Nanoparticles by High Pressure Homogenization

[0190]30 mg paclitaxel is dissolved in 3.0 ml methylene chloride. The solution was added to 27.0 ml of human serum abumin solution (1% w / v). The mixture was homogenized for 5 minutes at low RPM (Vitris homogenizer, model: Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification was performed at 9000-40,000 psi while recycling the emulsion for at least 5 cycles. The resulting system was transferred into a Rotary evaporator, and methylene chloride was rapidly removed at 40° C., at reduced pressure (30 mm Hg), for 20-30 minutes. The resulting dispersion was translucent, and the typical diameter of the resulting paclitaxel particles was 160-220 (Z-average, Malvern Zetasizer).

[0191]The dispersion was further lyophilized for 48 hrs without adding any cryoprotectant. The resulting cake could be easily reconstituted to the original dispersion by addition of...

example 2

Use of Conventional Surfactants and Proteins Results in Formation of Large Crystals

[0192]The following example demonstrates the effect of adding surfactants which are used in the conventional solvent evaporation method. A series of experiments was conducted employing a similar procedure to that described in Example 1, but a surfactant such as Tween 80 (1% to 10%) is added to the organic solvent. It was found that after removal of the methylene chloride, a large number of paclitaxel crystals is obtained having an average size of 1-2 micron, as viewed by light microscopy and under polarized light. The crystals grow within a few hours to form very large needle-like crystals, with a size in the range of about 5-15 micron. A similar phenomenon is observed with other commonly used surfactants, such as Pluronic F-68, Pluronic F-127, Cremophor EL and Brij 58.

[0193]From these results it can be concluded that the conventional solvent evaporation method utilizing conventional surfactants in co...

example 3

Use of Conventional Surfactants Alone Results in Formation of Large Crystals

[0194]This example demonstrates that it is not possible to form nanoparticles while using conventional surfactants, without a polymeric core material, with pharmacologically active agents which are soluble in polar, water immiscible solvents (e.g. chloroform).

[0195]30 mg Taxol is dissolved in 0.55 ml chloroform and 0.05 ml ethanol. The solution is added to 29.4 ml of Tween 80 solution (1% w / v), which is presaturated with 1% chloroform. The mixture is homogenized for 5 minutes at low RPM (Vitris homogenizer, model: Tempest I.Q.) in order to form a crude emulsion, and then transferred into a high pressure homogenizer (Avestin). The emulsification is performed at 9000-40,000 psi while recycling the emulsion for at least 6 cycles. The resulting system was transferred into a Rotary evaporator, and the chloroform was rapidly removed at 40° C., at reduced pressure (30 mm Hg), for 15-30 minutes. The resulting disper...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

In accordance with the present invention, there are provided compositions and methods useful for the in vivo delivery of substantially water insoluble pharmacologically active agents (such as the anticancer drug paclitaxel) in which the pharmacologically active agent is delivered in the form of suspended particles coated with protein (which acts as a stabilizing agent). In particular, protein and pharmacologically active agent in a biocompatible dispersing medium are subjected to high shear, in the absence of any conventional surfactants, and also in the absence of any polymeric core material for the particles. The procedure yields particles with a diameter of less than about 1 micron. The use of specific composition and preparation conditions (e.g., addition of a polar solvent to the organic phase), and careful selection of the proper organic phase and phase fraction, enables the reproducible production of unusually small nanoparticles of less than 200 nm diameter, which can be sterile-filtered. The particulate system produced according to the invention can be converted into a redispersible dry powder comprising nanoparticles of water-insoluble drug coated with a protein, and free protein to which molecules of the pharmacological agent are bound. This results in a unique delivery system, in which part of the pharmacologically active agent is readily bioavailable (in the form of molecules bound to the protein), and part of the agent is present within particles without any polymeric matrix therein.

Description

FIELD OF THE INVENTION[0001]The present invention relates to methods for the production of particulate vehicles for the intravenous administration of pharmacologically active agents, as well as novel compositions produced thereby. In a particular aspect, the invention relates to methods for the in vivo delivery of substantially water insoluble pharmacologically active agents (e.g., the anticancer drug Taxol®). In another aspect, dispersible colloidal systems containing water insoluble pharmacologically active agents are provided. The suspended particles may be formed of 100% active agent, or may be encased in a polymeric shell formulated from a biocompatible polymer, and have a diameter of less than about 1 micron. Invention colloidal systems may be prepared without the use of conventional surfactant or any polymeric core matrix. In a presently preferred aspect of the invention, there is provided a method for preparation of extremely small particles which can be sterile-filtered. Th...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/337A61K9/00A61K9/51
CPCA61K31/337A61K9/5169A61K9/0019
Inventor DESAI, NEIL P.SOON-SHIONG, PATRICK
Owner ABRAXIS BIOSCI LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products