Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Steel wire material and method for manufacturing same

a technology of steel wire and wire mesh, which is applied in the field of steel wire material, can solve the problems of difficult to remove the entire scale evenly and stably, difficult to perfectly remove the scale, and difficult to achieve the effect of uniform peeling performance, suppressing fine holes inside the scale, and easy peeling

Inactive Publication Date: 2013-10-17
KOBE STEEL LTD
View PDF3 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention relates to a steel wire material with a scale that has been adjusted to a certain thickness and contains minimal fine holes. This helps to improve the performance of the material during secondary work such as drawing, as the scale can be easily removed without causing any flaws or defects. Additionally, the use of this steel wire material results in high yield and minimal loss of scale.

Problems solved by technology

However, Patent Literatures 1-4 described above have problems as described below.
According to the method of forming the scale thick as Patent Literatures 1, 2, even when a bending strain is applied to the wire material by the MD method and the wire material surface is subjected to brushing, it is difficult to perfectly remove the scale.
More specifically, according to the MD method, different from the batch type acid cleaning method, it is difficult to remove the entire scale evenly and stably, and even when the wire material formed with thick scale is subjected to MD, the surface of the wire material may occasionally be spotted with finely crushed scale powder.
When the remaining scale remaining locally thus increases, in the secondary work such as drawing and the like, problems such as occurrence of a flaw due to the defective lubrication, lowering of the lifetime of the dice and the like are caused.
Also, it is difficult to stably lower the boundary face roughness by the method of lowering the boundary face roughness such as Patent Literature 3, it is difficult to stably form the holes even by the method of forming large holes of 1 μm or more inside the scale such as Patent Literature 4, and it is difficult to stably reduce the remaining scale amount according to either of these technologies.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example

[0042]Below, the present invention will be explained more specifically referring to an example: The present invention is not limited by the example described below, and it is a matter of course that the present invention can also be implemented with modifications being added appropriately within the scope adaptable to the purposes described above and below, and any of them is to be included within the technical range of the present invention.

[0043]After steel of the chemical composition shown in Tables 1, 2 was smelted according to an ordinary smelting method, a billet of 150 mm×150 mm was manufactured and was heated inside a heating furnace. Thereafter, the primary scale formed inside the heating furnace was descaled using high-pressure water, hot rolling, cooling and winding were executed under the conditions shown in Table 3, and the steel wire material of Φ5.5 mm was obtained.

[0044]The obtained steel wire material was measured by a method described below.

(1) Measurement of Thick...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
thicknessaaaaaaaaaa
equivalent circle diameteraaaaaaaaaa
Login to View More

Abstract

This steel wire material contains 0.05%-1.2% C (“%” means “% by mass,” same hereinafter for chemical components.), 0.01%-0.7% Si, 0.1%-1.5% Mn, 0.02% max. P (not including 0%), 0.02% max. S (not including 0%), and 0.005% max. N (not including 0%), with the remainder being iron and unavoidable impurities. The steel wire material has a scale 6.0-20 μm thick and holes of an equivalent circle diameter of 1 μm max. in said scale that occupy 10% by area max. Said scale does not detach in the cooling process after hot rolling or during storage or transportation but can readily detach during mechanical descaling.

Description

TECHNICAL FIELD[0001]The present invention relates to a steel wire material and a method for manufacturing the same, and relates more specifically to a steel wire material (“steel wire material” is hereinafter simply referred to as “wire material”) for mechanical descaling formed with a scale easily removable by mechanical descaling and a method for manufacturing the same.BACKGROUND ART[0002]A scale is formed normally on the surface of a wire material manufactured by hot rolling, and it is required to remove the scale before subjecting the wire material to secondary work such as drawing and the like. As such a scale removing method before secondary work, a batch type acid cleaning method was employed in prior arts, however, in recent years, from the viewpoints of the environmental pollution and cost reduction, a mechanical descaling (hereinafter referred to as MD) method has come to be employed. Therefore, the wire material is required to be formed with a scale with excellent MD per...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C22C38/54C22C38/16C22C38/08C22C38/14C22C38/12B21B1/16C22C38/42C22C38/20C22C38/06C22C38/04C22C38/02C22C38/00C22C38/50
CPCC22C38/54C22C38/002C22C38/16C22C38/08C22C38/14C22C38/12C22C38/001C22C38/50C22C38/42C22C38/20C22C38/06C22C38/04C22C38/02B21B1/16C21D1/74C21D8/065C21D9/525C22C38/00
Inventor TAKEDA, MIKAKONAKAKUBO, SHOHEIKIRIHARA, KAZUHIKOENDO, MASAYUKI
Owner KOBE STEEL LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products