Semiconductor device having vertical metal insulator semiconductor transistors having plural spatially overlapping regions of different conductivity type
a technology of vertical metal insulator and semiconductor transistor, which is applied in the direction of semiconductor devices, semiconductor/solid-state device details, electrical equipment, etc., can solve the problems of reducing on resistance, forming fine structures, and depleting the pillar layers
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
first embodiment
[0044] A first embodiment will be described with reference to FIGS. 1 to 12.
[0045]FIG. 1 is a diagram showing the sectional structure of a semiconductor device according to the first embodiment of the present invention. This semiconductor device is a vertical MISFET in which PN junctions are formed to extend in a depth direction. In each of the embodiments described below, for example, a first conductive type is N and, whereas a second conductive type is P.
[0046] As shown in FIG. 1, a semiconductor substrate (layer) 10 consisting of, for example, silicon is composed of a first semiconductor substrate 1 and a second semiconductor substrate 2. The first semiconductor substrate 1 has impurities of a high concentration and an N type conductivity. The second semiconductor substrate 2 is formed on the first semiconductor substrate 1 and has an N type conductivity with an impurity concentration lower than that of the first semiconductor substrate 1. The second semiconductor substrate 2 m...
second embodiment
[0067] A second embodiment will be described with reference to FIGS. 13 to 20. In the first embodiment, the second semiconductor substrate 2 is composed of, for example, a single epitaxial growth layer or the like. In contrast, a semiconductor device according to the second embodiment has a structure in which the second semiconductor substrate 2 has a plurality of layers and in which PN junctions are formed to be deeper by repeating the manufacturing method of the first embodiment.
[0068]FIG. 13 shows the sectional structure of the semiconductor device according to the second embodiment of the present invention. This semiconductor device is a vertical MISFET in which PN junctions are formed to extend in the depth direction. In the second embodiment, the second semiconductor substrate 2 is composed of a plurality of epitaxial growth layers consisting of, for example, silicon. The first and second diffusion areas 13 and 14 are formed by forming a plurality of different impurity diffus...
third embodiment
[0082] A third embodiment will be described with reference to FIGS. 22 to 24. In addition the structure of the second embodiment, the third embodiment has a structure in which diffusion areas are further repeatedly formed breadthwise.
[0083]FIG. 22 shows the sectional structure of a semiconductor device according to the third embodiment of the present invention, i.e. the sectional structure of a semiconductor substrate provided with vertical MISFET elements. As shown in FIG. 22, for example, three second diffusion areas (P type areas) 14 are formed inside the semiconductor substrate 2 so as to be each sandwiched between the first diffusion areas (N type areas) 13. It is possible to further increase the number of second diffusion areas 14.
[0084]FIG. 23 shows an impurity concentration profile of a portion of the semiconductor device taken along the line XXIII-XXIII in FIG. 22. FIG. 24 shows a NET concentration profile indicating the total concentration distribution of the same portio...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com