Method for reducing pattern dimension in photoresist layer
a technology of photoresist layer and pattern, applied in the field of pattern dimension reduction in photoresist layer, can solve the problems of inability to achieve success, disadvantages that cannot be overcome, and the above-described method of post-pattern dimension reduction cannot be practiced without substantial variations, so as to achieve the effect of reducing a pattern dimension
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
example 1
[0045] A semiconductor silicon wafer was uniformly coated on a spinner with a positive-working photoresist composition (TDUR-P036PM, a product by Tokyo Ohka Kogyo Co.) followed by a baking treatment at 80° C. for 90 seconds to form a photoresist layer having a thickness of 560 nm.
[0046] The photoresist layer was subjected to a patterning light-exposure treatment with KrF excimer laser beams on a light-exposure machine (Model Canon FPA-3000EX3, manufactured by Canon Co.) followed by a post-exposure baking treatment at 120° C. for 90 seconds and then subjected to a development treatment with a 2.38% by weight aqueous solution of tetramethylammonium hydroxide to give a hole pattern having a diameter of 182.3 nm.
[0047] In the next place, the resist layer having the thus formed hole pattern was coated with a coating solution prepared by dissolving 9.1 g of a copolymeric resin of acrylic acid and N-vinylpyrrolidone in a copolymerization ratio of 2:1 by weight and 0.9 g of triethanolamin...
example 2
[0049] A semiconductor silicon wafer was uniformly coated on a spinner with a positive-working photoresist composition (TDMR-AR2000, a product by Tokyo Ohka Kogyo Co.) followed by a pre-baking treatment at 90° C. for 90 seconds to form a photoresist layer having a thickness of 1.3 μm.
[0050] In the next place, the photoresist layer was subjected to patterning light exposure on an i-line light-exposure machine (Model Nikon NSR-2205 il4E, manufactured by Nikon Co.) followed by a post-exposure baking treatment at 110° C. for 90 seconds and then subjected to a development treatment to give a trench pattern of 411.1 nm width.
[0051] The thus formed trench-patterned resist layer was provided in the same manner as in Example 1 with a coating layer of the water-soluble resin followed by a heat treatment to effect thermal shrinkage and then washing away of the coating layer with water. The result was that the width of the trench pattern had been reduced from 411.1 nm to 219.5 nm.
example 3
[0052] The experimental procedure was substantially the same as in Example 1 except that the coating solution of a water-soluble resin was prepared by dissolving, in 90 g of water, 9.5 g of a copolymeric resin of acrylic acid and N-vinylpyrrolidone in a copolymerization ratio of 2:1 by weight and 0.5 g of monoethanolamine. The result was that the hole pattern diameter could be reduced from 182.3 nm to 160.3 nm.
PUM
Property | Measurement | Unit |
---|---|---|
wavelengths | aaaaa | aaaaa |
boiling point | aaaaa | aaaaa |
thickness | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com