Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Rare earth ion doped LaBr3 glass ceramics and preparation method thereof

A technology of glass-ceramic and rare-earth ions, applied in the field of rare-earth ion-doped LaBr3 glass-ceramic and its preparation, can solve the problems of difficult growth of large-sized crystals, poor mechanical properties, easy deliquescence of crystals, etc., and achieves excellent scintillation performance, Good mechanical properties and good permeability

Inactive Publication Date: 2014-07-30
NINGBO UNIV
View PDF2 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Scintillation crystals generally have the advantages of radiation resistance, fast decay, and high light output, but scintillation crystals also have the following serious disadvantages: difficult to prepare, expensive
But LaBr 3 Crystals are prone to deliquescent, poor mechanical properties, easy to cleavage into flakes, difficult to grow large-sized crystals, expensive and other shortcomings affect its practical application

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Rare earth ion doped LaBr3 glass ceramics and preparation method thereof
  • Rare earth ion doped LaBr3 glass ceramics and preparation method thereof
  • Rare earth ion doped LaBr3 glass ceramics and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0023] Embodiment 1: Table 1 shows the glass formula and the first crystallization temperature value of Embodiment 1.

[0024] Table 1

[0025]

[0026] The specific preparation process is as follows: in the first step, weigh 50 grams of analytically pure raw materials according to the formula in Table 1, add 2.5 grams of NH 4 HF 2 , 2.5 g NH 4 HBr 2 , Mix the raw materials evenly and pour them into a quartz crucible to melt, the melting temperature is 1350°C, keep warm for 2 hours, pour the glass melt into a cast iron mold, then place it in a muffle furnace for annealing, and keep warm at the glass transition temperature Tg for 2 hours Hours later, cool down to 50°C at a rate of 10°C / hour, turn off the power supply of the muffle furnace to automatically cool down to room temperature, and take out the glass; in the second step, according to the experimental data of thermal analysis (DTA) of the glass, the first crystallization temperature of 655 ℃, heat-treat the prepar...

Embodiment 2

[0028] Embodiment 2: Table 2 shows the glass formula and the first crystallization temperature value of Embodiment 2.

[0029] Table 2

[0030]

[0031] The specific preparation process is as follows: in the first step, weigh 50 grams of analytically pure raw materials according to the formula in Table 2, add 2.5 grams of NH 4 HF 2 , 2.5 g NH 4 HBr 2, Mix the raw materials evenly and pour them into a corundum crucible for melting, the melting temperature is 1400°C, keep warm for 1 hour, pour the glass melt into a cast iron mold, then place it in a muffle furnace for annealing, and keep warm at the glass transition temperature Tg for 2 Hours later, cool down to 50°C at a rate of 10°C / hour, turn off the power supply of the muffle furnace to automatically cool down to room temperature, and take out the glass; in the second step, according to the glass thermal analysis (DTA) experimental data, the first crystallization temperature of 662 ℃, heat-treat the prepared glass in ...

Embodiment 3

[0033] Embodiment 3: Table 3 shows the glass formula and the first crystallization temperature value of Embodiment 3.

[0034] table 3

[0035]

[0036] The specific preparation process is as follows: in the first step, weigh 50 grams of analytically pure raw materials according to the formula in Table 3, add 2.5 grams of NH 4 HF 2 , 2.5 g NH 4 HBr 2 , Mix the raw materials evenly and pour them into a quartz crucible to melt. The melting temperature is 1450°C and keep warm for 1.5 hours. Hours later, the temperature was lowered to 50° C. at a rate of 10° C. / hour, the power of the muffle furnace was turned off and the temperature was automatically lowered to room temperature, and the glass was taken out. In the second step, according to the glass thermal analysis (DTA) experimental data, the first crystallization temperature is 671°C, and the prepared glass is placed in a nitrogen precision annealing furnace at 690°C for 5 hours, and then heated at 5°C / hour Cool down to...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses rare earth ion doped LaBr3 glass ceramics and a preparation method thereof. The rare earth ion doped LaBr3 glass ceramics comprises the following components by molar percent: 50-70mol% of B2O3, 4-10mol% of AlF3, 3-15mol% of NaF, 1-15mol% of La2O3, 5-20mol% of LaBr3, and 0.5-10mol% of LnBr3, wherein LnBr3 is one of CeBr3, EuBr3, TbBr3, PrBr3 and NdBr3. The preparation method comprises the steps of firstly preparing B2O3-AlF3-NaF-La2O3-LaBr3-LnBr3 glass through a fusion method, and carrying out thermal processing so as to obtain the transparent LaBr3 glass ceramics. The LaBr3 glass ceramics prepared by the method can resist deliquescence, has good mechanical property, short wavelength and relatively high transmittance of blue violet light, and has the properties like very strong light output, rapid attenuation, good energy resolution and time resolution; the preparation method of the glass ceramics is simple and low in production cost.

Description

technical field [0001] The present invention relates to a rare earth ion doped glass ceramics, in particular to a rare earth ion doped LaBr used as a scintillation material 3 Glass-ceramic and its preparation method. Background technique [0002] Scintillation material is a light functional material that can emit visible light under the excitation of high-energy rays (such as x-rays, γ-rays) or other radioactive particles. It is widely used in nuclear medicine diagnosis, high-energy physics and nuclear physics experimental research, industry and geology. exploration and other fields. Depending on the application field, the requirements for scintillators are also different, but in general scintillator materials should have the following characteristics: high luminous efficiency, fast fluorescence decay, high density, low cost and good radiation resistance. Scintillation crystals generally have the advantages of radiation resistance, fast decay, and high light output, but sc...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): C03C10/16
Inventor 张为欢张约品夏海平欧阳绍业王倩杨斌
Owner NINGBO UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products