Synthesis method for cariprazine
a synthesis method and cariprazine technology, applied in the field of medical technology, can solve the problems of difficult purification, low production efficiency of cariprazine, unsuitable for large-scale production, etc., and achieve the effects of mild reaction conditions, short reaction time and simple post-treatmen
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
on of Cariprazine
[0032]20 g (56 mmol, 1.0 eq) of compound I, 300 ml of dichloromethane, and 60 ml of 20 wt % sodium hydroxide solution were added to a 1000 mL three-necked flask, and 9.1 g (84 mmol, 1.5 eq) of dimethylcarbamoyl chloride was added dropwise. Then the reaction mixture was stirred for 12 hours at 20-30° C. It was detected by HPLC that the raw materials had reacted completely, and the content of double-condensation impurity was 0.08%. After liquid separation of the reaction system and removal of a water phase, a dichloromethane phase was washed with water. Then the resultant was concentrated under reduced pressure to evaporate part of the dichloromethane. N-heptane was added to crystallize, then it was filtered, and the filter cake was dried to obtain 21.8 g of powdered solids (the cariprazine content was 99%, the purity was 99.5%, the double-condensation impurity content was 0.06%), with a yield of 90.9%.
example 2
on of Cariprazine
[0033]10 g (28 mmol, 1.0 eq) of compound I, 200 ml of dichloromethane, and 470 ml of 10 wt % potassium carbonate solution were added to a 1000 mL three-necked flask, and 4.5 g (42 mmol, 1.5 eq) of dimethylcarbamoyl chloride was added dropwise. Then the reaction mixture was stirred for 15 hours at 20-30° C. It was detected by HPLC that the raw materials had reacted completely. After liquid separation of the reaction system and removal of a water phase, a dichloromethane phase was washed with water. Then the resultant was concentrated under reduced pressure to evaporate part of the dichloromethane. N-heptane was added to crystallize, then it was filtered, and the filter cake was dried to obtain 10.7 g of powdered solids (the cariprazine content was 99%, the purity was 99.3%, the double-condensation impurity content was 0.09%), with a yield of 89.2%.
example 3
on of Cariprazine
[0034]20 g (56 mmol, 1.0 eq) of compound I, 500 ml of dichloromethane, 36 ml of 20 wt % sodium hydroxide solution and 500 ml of 10 wt % sodium carbonate were added to a 1000 mL three-necked flask, and 9.1 g (84 mmol, 1.5 eq) of dimethylcarbamoyl chloride was added dropwise. Then the reaction mixture was stirred for 13 hours at 15-25° C. It was detected by HPLC that the raw materials had reacted completely, and the content of double-condensation impurity was 0.07%. After liquid separation of the reaction system and removal of a water phase, a dichloromethane phase was washed with water. Then the resultant was concentrated under reduced pressure to evaporate part of the dichloromethane. N-heptane was added to crystallize, then it was filtered, and the filter cake was dried to obtain 22.3 g of powdered solids (the cariprazine content was 99%, the purity was 99.5%, the double-condensation impurity content was 0.06%), with a yield of 92.1%.
PUM
Property | Measurement | Unit |
---|---|---|
reaction temperature | aaaaa | aaaaa |
reaction temperature | aaaaa | aaaaa |
reaction temperature | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com