Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Silane and borane treatments for titanium carbide films

Active Publication Date: 2014-09-18
ASM IP HLDG BV
View PDF0 Cites 275 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patent describes a method of using a silane / borane agent in atomic layer deposition (ALD) processes to create films containing metal carbide. The silane / borane agent can be used to reduce oxidized portions of metal films and to prevent further oxidation of the film itself or subsequent films. It can also help remove oxygen from deeper within a film. Overall, this method provides a way to create high-quality metal carbide films with reduced oxidation and improved quality.

Problems solved by technology

Despite the lower impurity levels in ALD films, the impurity content in ALD films can still be a problem.
In some cases, the semiconductor process flow necessarily limits the maximum deposition temperature such that that some residues are left in the film.
Halide impurities are present mainly at the interfaces, which can also lead to problems.
In another example, in some applications amorphous films are needed, which limits the growth temperature.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Silane and borane treatments for titanium carbide films
  • Silane and borane treatments for titanium carbide films
  • Silane and borane treatments for titanium carbide films

Examples

Experimental program
Comparison scheme
Effect test

example 1

TiC Films

[0112]Using the methods disclosed here in, various titanium carbide thin films were deposited. The thin film was then analyzed using Rutherford backscattering spectrometry, or RBS, to determine the composition of the various films.

[0113]After analyzing the various films, it was determined that they the following ranges of compositions on an atomic basis: about 17-20% Ti, about 17-27% Al, about 16-42% Si, and about 21-39% C.

example 2

TiAlC and TiAlSiC in a single wafer reactor

[0114]Titanium-aluminium carbide (TiAlC) and titanium-aluminum-carbide-silicon (TiAlSiC) thin films were deposited by Atomic layer deposition (ALD) in Pulsar® 2000 R&D reactor using TiCl4 as the titanium source and Al(CH2CH3)3 as the aluminum and carbon source for the TiAlC films and in addition disilane (Si2H6) or trisilane (Si3H8) was used as a silicon source for TiAlSiC films.

[0115]TiAlC and TiAlSiC films were deposited using alternate and sequential pulses of TiCl4 and Al(CH2CH3)3 and in the case of TiAlSiC films additional alternate and sequential pulses of disilane (Si2H6) or trisilane (Si3H8) were provided. TiAlC films were also soaked with disilane (Si2H6) or trisilane (Si3H8) for about 1 minute. Films were deposited and treated at a reaction temperature of about 415° C. TiCl4 was pulsed for 0.05 s and purged for 5 s. Al(CH2CH3)3 was pulsed for 0.5 s and purged for 5 s. Si2H6 or Si3H8 was pulsed for 0.5 s and purged for 5 s. The Al(...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Methods of treating metal-containing thin films, such as films comprising titanium carbide, with a silane / borane agent are provided. In some embodiments a film comprising titanium carbide is deposited on a substrate by an atomic layer deposition (ALD) process. The process may include a plurality of deposition cycles involving alternating and sequential pulses of a first source chemical that comprises titanium and at least one halide ligand, a second source chemical comprising metal and carbon, wherein the metal and the carbon from the second source chemical are incorporated into the thin film, and a third source chemical, wherein the third source chemical is a silane or borane that at least partially reduces oxidized portions of the titanium carbide layer formed by the first and second source chemicals. In some embodiments treatment forms a capping layer on the metal carbide film.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]The present invention relates generally to processes for producing metal carbide thin films on a substrate by atomic layer deposition. In some embodiments, titanium carbide films produced by the atomic layer deposition (ALD) processes disclosed herein can be used in metal gate and metal electrode applications in metal oxide semiconductor field effect transistors (MOSFETs), such as n-channel MOSFETs (NMOS).[0003]2. Description of the Related Art[0004]Atomic layer deposition (ALD) is a generally self-limiting process, whereby alternated pulses of reaction precursors saturate a substrate surface and leave no more than about one monolayer of material per pulse. The deposition conditions and precursors are selected to provide self-saturating reactions, such that an adsorbed layer in one pulse leaves a surface termination that is non-reactive with the gas phase reactants of the same pulse. A subsequent pulse of different reac...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H01L21/02
CPCH01L21/02186H01L21/02337H01L21/022H01L21/28044H01L21/2807H01L21/0228H01L21/02321H01L21/28088H01L21/28556H01L21/28568
Inventor CHEN, JERRYMACHKAOUTSAN, VLADIMIRMILLIGAN, BRENNANMAES, JAN WILLEMHAUKKA, SUVISHERO, ERICBLOMBERG, TOM E.LI, DONG
Owner ASM IP HLDG BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products