Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Protein stabilizer

a stabilizer and protein technology, applied in the field of protein stabilizers, can solve the problems of reducing the activity of surfactants with proteins, losing original functions, and reducing the stability of proteins, so as to reduce the probability of contamination, reduce the loss of activity, and facilitate implementation.

Inactive Publication Date: 2010-06-24
JNC CORP
View PDF2 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0029]The protein stabilizer and the method for stabilizing a protein in the present invention have the following effects: (1) low probability of contamination with pathogens, (2) the effect of stabilization on photoproteins, and (3) minimization of loss of activity under lyophilizing conditions. As the protein stabilizer in the present invention has the effects described above, the protein composition containing the protein stabilizer and a protein not only can be used in research, but also can be reliably used for general consumption, as well as in toys or goods for relaxation.DESCRIPTION OF THE EMBODIMENTS
[0030]The present invention will be described in detail below by reference to the following embodiments, but the present invention is not limited to these embodiments. Moreover, based on this description, the objects, features, advantages, and ideas of the present invention can be understood by those skilled in the art, such that the present invention can be easily implemented by those skilled in the art. The following aspects and embodiments of the invention are preferred aspects and embodiments, which are only for illustration and not for limitation. It is appreciated by those skilled in the art that, various modifications can be made from this description without departing from the spirit and scope of the present invention as disclosed in the specification.
[0033]There is no specific limitation on the peptide that is applicable in the present invention, as long as the peptide is from fish. According to the present invention, the so-called peptide refers to a polypeptide that has a number of amino acids lower than 50 and can be obtained by hydrolyzing the proteins derived from fishes. The kind of fish is not particularly limited, and includes: sardine, saury, sparid, salmon, herring and carp. Nemipterus virgatus used as raw material of minced fish or Myripristis berndti or tilapia for fillet processing are large fish with large scales and can be used efficiently.
[0034]In the proteins of fish, proteins of muscles consisting of actin and myosin, collagen and elastin are dominant. The peptides used in the present invention are obtained by hydrolyzing from collagen and gelatin prepared by unwinding the triple helix structure of collagen, and have the advantage of ready availability, easy operation, and good useful effect. Furthermore, the collagen that is applicable for the invention can be obtained from any part of a fish, especially the scales, which contain large amounts of collagen and lower fat concentration, are preferred for collagen preparation.
[0035]The method for extracting collagen is not particularly limited and includes, for example, non-decalcification disclosed in Japanese Patent Publication No. 2004-57196, in which scales of fish are extracted with hot water, and then enzyme is added for hydrolysis. The method for extracting collagen also includes the method disclosed in Japanese Patent Publication No. 2004-91418, in which scales are decalcified with acid to get crude collagen, and then the crude collagen is hydrolyzed in an aqueous solution of a weak base, such as sodium bicarbonate, under pressurized conditions.
[0036]The hydrolyzing method is not particularly limited and includes, for example, acid degradation, enzyme degradation, and alkali degradation. Any method for obtaining the desired peptide can be adopted in the present invention.

Problems solved by technology

If its higher order structure is broken down for some reason, the original function may be lost or its catalytic activity may decrease.
In some cases, different combinations of amino acids, saccharides, reducing agents, polyols, and surfactants with a protein do not have sufficient effect on its stabilization.
However, most of the proteins used for a protein stabilizer are obtained from quadrupeds such as cattle, and there is a possibility that the protein stabilizer will be contaminated with pathogens of the animals such as bovine spongiform encephalopathy (BSE) or foot-and-mouth disease.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

embodiment

Example 1

Confirmation of Stabilizer Effect of Peptide from Fish on Lyophilizing of Aequorin

[0098](1) Preparation of Lyophilized Sample

[0099]To 792 μl of solutions containing 1%, 0.1%, 0.01% Marine Collagen Oligo CF (having a weight average molecular weight of 1,000, manufactured by Chisso Corporation) in 10 mM EDTA, 50 mM Tris-HCl (pH 7.6) (hereinafter, sometimes called “dilution”), 8 μl of aequorin solution (1.5 mg / ml) in 50 mM Tris-HCl (pH 7.6) containing 1.2 M ammonium sulphate and 10 mM EDTA was added respectively, to make aequorin dilutions having a final concentration of 15 μg / ml. 200 μl of the obtained aequorin dilutions were charged into eppendorf tubes respectively, and lyophilized overnight with a freeze dryer (FDU-2100, manufacture by Tokyo Rikakikai Co., Ltd.) after opening a hole on the cover.

[0100](2) Determination of Luminescence Activity of Aequorin

[0101]After lyophilizing, 200 μl of 50 mM Tris-HCl (pH 7.6) containing 10 mM EDTA was added into the obtained lyophilize...

example 2

Confirmation of Stabilization Effect in Storage at 4° C. after Re-Dissolution of the Lyophilized Sample

[0104]The re-dissolved aequorin dilutions of Example 1 were directly stored at 4° C., and the luminescence intensity was measured after 7 days and 14 days according to the method (2) of Example 1, to confirm the respective stabilization effect. The results are shown in Table 2.

TABLE 2Weight percentage ofchange in luminescenceConcentrationintensity (%)Test material(%)0 day7 days14 daysMarine Collagen110010283Oligo CF0.11001061010.011009987BSA110010297Control—1009479

[0105]In the presence of Marine Collagen Oligo CF, it is confirmed when compared with the control sample that, the luminescence activity of aequorin is maintained. Even when the calcium-binding protein is stored cold in solution form, Marine Collagen Oligo CF still exerts its stabilization effect.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

An excellent protein stabilizer is provided, which has the following effects: (1) low probability with contamination of pathogens, (2) the effect of stabilization on photoproteins, and (3) minimization of loss of activity under lyophilizing conditions. A peptide from fish is used as the active ingredient for the protein stabilizer.

Description

CROSS-REFERENCE TO RELATED APPLICATION[0001]This application claims the priority benefit of Japan application serial no. 2008-323191, filed on Dec. 19, 2008. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of specification.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The present invention generally relates to a protein stabilizer, a protein composition, a method for stabilizing a protein, and a kit containing a protein composition.[0004]2. Description of Related Art[0005]It is generally known that the function of a protein such as an enzyme is dependent on its higher order structure (or conformation). If its higher order structure is broken down for some reason, the original function may be lost or its catalytic activity may decrease. On the other hand, protein is mostly stored in a lyophilized form, and various lines of research have been performed to prevent loss of function and to preserve cataly...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C07K14/435C07K1/107
CPCC07K1/1136G01N33/53C07K14/461C07K1/12C07K14/78C07K14/43504
Inventor INOUYE, SATOSHISATO, JUNICHI
Owner JNC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products