Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method of manufacturing of 7-ethyl-10-hydroxycamptotecin

a manufacturing method and technology of 7-ethyl-10-hydroxycamptothecin, which are applied in the directions of biocide, heterocyclic compound active ingredients, drug compositions, etc., can solve the problems of demanding isolation procedure and affect the yield of 7-ethylcamptothecin 1-oxide, and achieve the effect of improving the yield of 7-ethylcamptothecin

Inactive Publication Date: 2007-05-31
PLUS CHEMICAL S A
View PDF22 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011] Preferred saturated aliphatic monocarboxylic acids are formic acid, acetic acid or trifluoroacetic acid, more preferred being acetic acid in an amount of 791 to 1187 mol, most preferably 890 to 1088 mol, per 1 mol of 1-ethylcamptothecin.
[0012] Preferred sulfur compound that partly deactivates the hydrogenation catalyst is dimethyl sulfoxide, preferably in an amount of 0.18 to 0.33 mol, more preferably in an amount of 0.23 to 0.28 mol, per 1 mol of 7-ethylcamptothecin.
[0013] Preferred hydrogenation catalyst is a noble metal, preferably platinum which is advantageously used on a carrier consisting of an activated carbon or aluminum oxide. Platinum is advantageously used in an amount of 0.018 to 0.027 mol, more advantageously in an amount of 0.020 to 0.025 mol, per 1 mol of 7-ethylcampto...

Problems solved by technology

However, this method of manufacturing of 7-ethyl-10-hydroxycamptothecin suffers from the fact that the oxidation of 7-ethylcamptothecin in the first reaction step requires relatively great amount of acetic acid (300 ml of acetic acid per 1 gram of 7-ethylcamptothecin).
This isolation procedure is demanding and affects very unfavourably the yield of 7-ethylcamptothecin 1-oxide.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method of manufacturing of 7-ethyl-10-hydroxycamptotecin
  • Method of manufacturing of 7-ethyl-10-hydroxycamptotecin
  • Method of manufacturing of 7-ethyl-10-hydroxycamptotecin

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0017] In a 100 ml beaker, 0.5 g (1.239 mmol) of 7-ethylcamptothecin, 0.32 g of 5% hydrogenation catalyst Pt / C (containing 0.028 mmol of platinum) and 0.025 ml (0.352 mmol) of dimethyl sulfoxide are added to 70 ml of acetic acid. The obtained suspension is quantitatively transferred into a 100 ml autoclave. After closure, the autoclave is flushed three times with nitrogen at the pressure of 0.5 MPa and then three times with hydrogen at the pressure of 0.5 MPa. The temperature is adjusted to 65° C. and the mixture is stirred at 950 r.p.m. The hydrogen pressure is adjusted to 0.5 MPa. After 43.5 hours the consumption of hydrogen stops and the procedure is terminated. After cooling to 25° C., the stirring is stopped and the internal pressure is equilibrated with the ambient atmosphere. The autoclave is flushed three times with nitrogen, the hydrogenation catalyst is removed from the hydrogenation mixture by filtration under pressure of nitrogen and the catalyst cake is washed with 10 m...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to View More

Abstract

The method of manufacturing of 7-ethyl-10-hydroxycamptothecin of formula I characterized in that 7-ethyl-1,2,6,7-tetrahydrocampotothecin of formula IV is oxidized with an oxidizing agent selected from the group coprising iodosobenzene, an ester of iodosobenzene, sodium periodate, potassium periodate, potassium peroxodisulfate and ammonium peroxodisulfate, in a solvent formed by a saturated aliphatic monocarboxylic acid containing 1 to 3 carbon atoms, and in the presence of water.

Description

FIELD OF THE INVENTION [0001] This invention relates to the method of manufacturing of 7-ethyl-10-hydroxycamptothecin of formula I which is used for manufacturing of cytostatically active irinotecan hydrochloride trihydrate, effective particularly in treatment of lung and rectum cancer. The cytostatic effect of irinotecan hydrochloride trihydrate is based on its ability to inhibit topoisomerase. BACKGROUND OF THE INVENTION [0002] So far, 7-ethyl-10-hydroxycamptothecin is usually prepared in two reaction steps. In the first reaction step, 7-ethylcamptothecin of formula II is oxidized with hydrogen peroxide in acetic acid under formation of 7-ethylcamptothecin 1-oxide of formula III which in the second reaction step is dissolved-in the solvent system dioxane-acetonitrile-water and the solution is irradiated with UV light in the presence of sulfuric acid to afford the desired 7-ethyl-10-hydroxycamptothecin (see U.S. Pat. No. 4,473,692 and U.S. Pat. No. 4,513,138 and Zhongguo Yaow...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61K31/4745C07D471/14C07D491/22
CPCC07D491/22A61P35/00
Inventor DOBROVOLNY, PETR
Owner PLUS CHEMICAL S A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products