Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method to enhance delivery of glutathione and ATP levels in cells

a technology of atp and glutathione, which is applied in the direction of biocide, drug composition, genetically modified cells, etc., can solve the problem that simply administering a gsh precursor such as cysteine will not be as effectiv

Inactive Publication Date: 2006-05-18
MAX INT LLC
View PDF7 Cites 15 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

"The present invention provides a method to treat mammals who are threatened or afflicted with hypoxic conditions by administering a compound of formula (Ia). This compound can counteract the effects of hypoxia in the tissues of the mammal. Unlike other methods, this compound works by delivering ribose to ATP-depleted tissues, which stimulates the in vivo synthesis of ATP and NADPH, which in turn supplies the electrons to glutathione reductase. This recycling of oxidized GSH via GSSG, to free GSH, which resumes its protective role as a cofactor for antioxidant enzymes in the cell. This compound can be administered orally or through injection or infusion depending on the situation."

Problems solved by technology

It is believed that simply administering a GSH precursor such as cysteine will not be as effective in many instances of hypoxia, when the depletion of ATP stores contributes to inhibition to the biosynthesis of GSH.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method to enhance delivery of glutathione and ATP levels in cells
  • Method to enhance delivery of glutathione and ATP levels in cells
  • Method to enhance delivery of glutathione and ATP levels in cells

Examples

Experimental program
Comparison scheme
Effect test

example 1

2(R,S)-D-ribo-1′,2′,3′,4′-Tetrahydroxybutylthiazolidine-4(R)-carboxylic Acid (RibCys)

[0025] This compound was synthesized using ribose (Rib) as described by R. Bognar et al., Z. Liebigs Ann. Chem., 738, 68 (1970), the disclosure of which is incorporated by reference herein. The product was collected to give 4.71 g (92.2% yield) of pale yellow material, mp 149°-151° C. dec. [α]D25 −103.1° (c=0.52, H2O); IR (KBr) ν3220 (br, OH, COO−), 1610 cm−1 (COO−).

example 2

Stimulation of Glutathione Biosynthesis in Isolated Rat Hepatocytes by L-Cysteine Prodrugs and Inhibition by Buthionine Sulfoximine (BSO)

[0026] Rat hepatocytes were isolated following the methods of P. O. Seglen, Exper. Cell Res., 74, 450 (1972). After final plating, the hepatocytes were maintained in culture for 24 hr prior to use. Only primary cultures were used throughout the studies. The hepatocytes were incubated with cysteine prodrugs NAC and (Ia) for a 4-hr period, and after removal of media by aspiration, the cells were rinsed with cold phosphate-buffered saline and deproteinized with 5% sulfosalicylic acid. Total GSH content (GSH+GSSG) was determined by a modification of the DTNB [5,5′-dithiobis(2-nitrobenzoic acid)] glutathione reductase recycling method of F. Tietze, Anal. Biochem., 27, 502 (1969). The GSH concentration in the sample was quantified by determining the cycling rate (ΔOD at 412 nm / min) of the sample. For the inhibition studies with BSO, the cells were pre-e...

example 3

RibCys Elevates GSH in Heart and Muscle Tissue

[0030] As reported by J. C. Roberts et al., Toxicol. Lett., 59, 245 (1991), RibCys successfully elevated glutathione (GSH) levels in numerous organs of tumor-bearing CDF1 mice. GSH content was assayed 1, 2, 4, 8 and 16 h after RibCys administration (8 mmol / kg, i.p.); various organs achieved maximal GSH content at different time points. GSH in the liver was elevated 1.5-fold compared to untreated controls at the 16-h time point. Kidney GSH also was maximal at 16 h and achieved 1.6-times control values. GSH in muscle achieved 2.5 times the levels in control animals, while the bladder was elevated 2.1-fold, and the heart 1.8-fold. Other tissues tested (spleen, pancreas, lung) showed a 1.1 - to 1.2-fold increase in GSH content. GSH in implanted L1210 tumors was also elevated only 1.2-fold.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
timeaaaaaaaaaa
body weightaaaaaaaaaa
body weight pressureaaaaaaaaaa
Login to View More

Abstract

A therapeutic method is provided comprising treating a mammal subject to hypoxia with an amount of 2(R,S)-D-ribo-(1′,2′,3′,4′-tetrahydroxybutyl)thiazolidine-4(R)-carboxylic acid (RibCys) or a pharmaceutically acceptable salt thereof effective to both maintain, restore or increase both the ATP levels and the glutathione (GSH) levels in said tissue.

Description

BACKGROUND OF THE INVENTION [0001] The protective mechanisms of mammalian cells against exogeneous and endogenous stressors that generate harmful free radicals employ the antioxidant co-enzyme, glutathione (GSH). GSH is important in maintaining the structural integrity of cell and organelle membranes and in the synthesis of microtubules and macromolecules. See C. D. Klassen et al. Fundamental and Applied Toxicology, 5, 806 (1985). Stimulation of GSH synthesis in rat renal epithelial cells and stomach cells has been found to protect the cells from the toxic effects of cyclophosphamide and serotonin, respectively. Conversely, inhibition of glutathione synthesis and glutathione depletion has been found to have the following effects: (a) decreased cell viability, (b) increased sensitivity of cells to the effects or irradiation, (c) increased sensitivity of tumor cells to peroxide cytolysis, (d) decreased synthesis of prostaglandin E and leukotriene C and (e) selective destruction of try...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/7056A01K67/027C12N5/06
CPCA61K31/426A01K67/0271A01K2227/105A01K2267/0331C12N2510/00A61K31/7056A61P9/00A61P9/10A61P11/00A61P43/00
Inventor NAGASAWA, HERBERT T.
Owner MAX INT LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products