Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof

a technology of pressure-resistant gas and aqueous dispersions, which is applied in the field of long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof, can solve the problems of vesicle durability, encapsulated gas-filled free space is generally too small for good echogenic response, and the concentration of bubbles is too low for being practical

Inactive Publication Date: 2001-05-24
LUCENT TECH INC
View PDF0 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0018] Otherwise, according to a second embodiment, one can directly prepare the desired suspensions by suitable usual methods under an atmosphere of the new gas according to the invention.
[0022] It should be noted that in general the preparation mode involving one first type of gas for preparing the microvesicles and, thereafter, substituting the original gas by a second kind of gas, the latter being intended to confer different echogenic properties to said microvesicles, has the following advantage: As will be best seen from the results in the Examples hereinafter, the nature of the gas used for making the microvesicles, particularly the microballoons with a polymer envelope, has a definitive influence on the overall size (i.e. the average mean diameter) of said microvesicles; for instance, the size of microballoons prepared under air with precisely set conditions can be accurately controlled to fall within a desired range, e.g. the 1 to 10 .mu.m range suitable for echographying the left and right heart ventricles. This not so easy with other gases, particularly the gases in conformity with the requirements of the present invention; hence, when one wishes to obtain microvesicles in a given size range but filled with gases the nature of which would render the direct preparation impossible or very hard, one will much advantageously rely on the two-steps preparation route, i.e. one will first prepare the microvesicles with a gas allowing more accurate diameter and count control, and thereafter replace the first gas by a second gas by gas exchange.

Problems solved by technology

In order to develop the suspension of bubbles in the liquid carrier, both liquid and solid components are agitated together under sterile conditions for a few seconds and, once made, the suspension must then be used immediately, i.e. it should be injected within 5-10 minutes for echographic measurements; indeed, because they are evanescent, the bubble concentration becomes too low for being practical after that period.
Despite the many progresses achieved regarding the stability under storage of aqueous microbubble suspensions, this being either in the precursor or final preparation stage, there still remained until now the problem of vesicle durability when the suspensions are exposed to overpressure, e.g. pressure variations such as that occurring after injection in the blood stream of a patient and consecutive to heart pulses, particularly in the left ventricle.
The drawback with the plain porous microspheres is that the encapsulated gas-filled free space is generally too small for good echogenic response and the spheres lack adequate elasticity.
Unfortunately, this finding is of limited value in the diagnostic field since once the contrast agent is injected to the bloodstream of patients (the gas content of which is of course outside control), it becomes diluted therein to such an extent that the effect of the gas originally dissolved in the injected sample becomes negligible.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
  • Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof

Examples

Experimental program
Comparison scheme
Effect test

example 2

[0035] Aliquots (1 ml) of some of the microballoon suspensions prepared in Example 1 were injected in the jugular vein of experimental rabbits in order to test echogenicity in vivo. Imaging of the left and right heart ventricles was carried out in the grey scale mode using an Acuson 128-XP5 echography apparatus and a 7.5 MHz transducer. The duration of contrast enhancement in the left ventricle was determined by recording the signal for a period of time. The results are gathered in Table 2 below which also shows the PC of the gases used.

2 TABLE 2 Duration of Sample (Gas) contrast (sec) PC (Torr) AMe1 (CH.sub.4) zero 34 A14 (air) 10 53 A18 (air) 11 52 AX1 (Xe) 20 65 AX2 (Xe) 30 89 ASF2 (SF.sub.6) >60 140

[0036] From the above results, one can see the existence of a definite correlation between the critical pressure of the gases tried and the persistence in time of the echogenic signal.

example 3

[0037] A suspension of echogenic air-filled galactose microparticles (Echovist.RTM. from SCHERING AG) was obtained by shaking for 5 sec 3 g of the solid microparticles in 8.5 ml of a 20% galactose solution. In other preparations, the air above a portion of Echovist.RTM. particles was evacuated (0.2 Torr) and replaced by an SF.sub.6 atmosphere, whereby, after addition of the 20% galactose solution, a suspension of microparticles containing associated sulfur hexafluoride was obtained. Aliquots (1 ml) of the suspensions were administered to experimental rabbits (by injection in the jugular vein) and imaging of the heart was effected as described in the previous example. In this case the echogenic microparticles do not transit through the lung capillaries, hence imaging is restricted to the right ventricle and the overall signal persistence has no particular significance. The results of Table 3 below show the value of signal peak intensity a few seconds after injection.

3TABLE 3 Signal p...

example 4

[0039] A series of echogenic suspensions of gas-filled microbubbles were prepared by the general method set forth below:

[0040] One gram of a mixture of hydrogenated soya lecithin (from Nattermann Phospholipids GmbH, Germany) and dicetyl-phosphate (DCP), in 9 / 1 molar ratio, was dissolved in 50 ml of chloroform, and the solution was placed in a 100 ml round flask and evaporated to dryness on a Rotavapor apparatus. Then, 20 ml of distilled water were added and the mixture was slowly agitated at 75.degree. C. for an hour. This resulted in the formation of a suspension of multilamellar liposomes (MLV) which was thereafter extruded at 75.degree. C. through, successively, 3 .mu.m and 0.8 .mu.m polycarbonate membranes (Nuclepore.RTM.). After cooling, 1 ml aliquots of the extruded suspension were diluted with 9 ml of a concentrated lactose solution (83 g / l), and the diluted suspensions were frozen at -45.degree. C. The frozen samples were thereafter freeze-dried under high vacuum to a free-f...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
sizeaaaaaaaaaa
diametersaaaaaaaaaa
diametersaaaaaaaaaa
Login to View More

Abstract

One can impart outstanding resistance against collapse under pressure to gas-filled microvesicle used as contrast agents in ultrasonic echography by using as fillers gases whose solubility in water, expressed in liter of gas by liter of water under standard conditions, divided by the square root of the molecular weight does not exceed 0.003.

Description

[0001] The present invention concerns stable dispersions or compositions of gas filled microvesicles in aqueous carrier liquids. These dispersions are generally usable for most kinds of applications requiring gases homogeneously dispersed in liquids. One notable application for such dispersions is to be injected into living beings, for instance for ultrasonic echography and other medical applications. The invention also concerns the methods for making the foregoing compositions including some materials involved in the preparations, for instance pressure-resistant gas-filled microbubbles, microcapsules and microballoons.BACKGROUND OF INVENTION[0002] It is well known that microbodies or microglobules of air or gas (defined here as microvesicles), e.g. microbubbles or microballoons, suspended in a liquid are exceptionally efficient ultrasound reflectors for echography. In this disclosure the term of "microbubble" specifically designates hollow spheres or globules, filled with air or a ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A01N29/02A01N29/04A01N59/10A23J1/00A61B8/00A61K31/03A61K33/14A61K49/00A61K9/127A61K49/04A61K49/22C07K1/00
CPCA61K49/223A61K41/00A61K49/00C12P7/18
Inventor SCHNEIDER, MICHELYAN, FENGGRENIER, PASCALGARCEL, NADINEPUGINIER, JEROMEBARRAU, MARIE-BERNADETTE
Owner LUCENT TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products