Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

An abnormal detection method for power Internet of things equipment based on graph neural network

A technology for power Internet of Things and equipment anomalies, applied in the direction of neural learning methods, biological neural network models, neural architectures, etc., can solve the problem of low accuracy, failure to use equipment space characteristics, failure to extract power Internet of Things equipment space characteristics, etc. problems, to achieve the effect of enhancing rationality and reducing false positives

Active Publication Date: 2022-04-12
EAST CHINA JIAOTONG UNIVERSITY
View PDF12 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, this scheme has the following defects: ① During the process of constructing the feature matrix, only the statistical features based on time series are extracted, and the spatial features of the power Internet of Things equipment cannot be extracted, resulting in low accuracy of subsequent anomaly detection
However, this solution only processes the historical power consumption data of the same device, and does not take advantage of the spatial characteristics between devices

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • An abnormal detection method for power Internet of things equipment based on graph neural network
  • An abnormal detection method for power Internet of things equipment based on graph neural network
  • An abnormal detection method for power Internet of things equipment based on graph neural network

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0063] In order to understand the above-mentioned purpose, features and advantages of the present invention more clearly, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. In the following description, many specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, therefore, the present invention is not limited to the specific embodiments disclosed below limit.

[0064] Unless otherwise defined, the technical terms or scientific terms used herein shall have the common meanings understood by those having ordinary skill in the field to which this application relates. "First", "second" and similar words used in the specification and claims of this patent application do not indicate any sequence, quantity or importance, but are only used to distinguish different components...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

This application relates to a graph neural network-based abnormality detection method for electric power Internet of Things equipment, which includes the following steps: S1: using data collection tools to collect traffic data and business data of different electric power Internet of Things devices; S2: analyzing the collected data Koopman analysis; S3: Construct the graph structure of the power Internet of Things; S4: Construct a graph neural network model using graph models as input, and use graph convolution and graph attention networks to update node feature states; S5: Use K-Means clustering Anomaly detection is performed on nodes at a certain moment. The present invention captures the nonlinear dynamic characteristics of the power Internet of Things data by introducing Koopman analysis; introduces the graph convolutional neural network, extracts the spatial characteristics of the power Internet of Things, and fuses the attributes of the device nodes themselves and the neighborhood device nodes in the topological structure of the Power Internet of Things The information realizes the anomaly detection of the power Internet of things, effectively improving the accuracy and stability of the detection.

Description

technical field [0001] The present application relates to the technical field of power equipment detection, and in particular to a graph neural network-based abnormality detection method for power Internet of Things equipment. Background technique [0002] With the rapid development of communication technology and the complexity of the application environment, more and more smart devices are integrated into the power Internet of Things to sense the status of the power grid and transmit information, which also brings more risks and risks. challenge. The external data collected by the terminal devices in the electric power Internet of Things, namely smart meters, smart temperature sensors, smart monitoring, and some smart terminal products that provide data collection and communication services, are relatively random. When there is a large difference in the network, it is difficult to achieve consistency between the data of each node, and the scattered distribution of power I...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): G06F30/27G06F17/13G06F17/16G06K9/62G06N3/04G06N3/08
CPCG06F30/27G06F17/13G06F17/16G06N3/08G06N3/045G06F18/23213G06F18/24
Inventor 谢昕徐磊李欣磊黄钰慧宁蔚烨喻思李钊熊佳芋
Owner EAST CHINA JIAOTONG UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products