[0022]The method and the system disclosed herein address the above mentioned needs for generating a navigation data structure with a few sub-frames, for example, three sub-frames, configuring navigation data in these sub-frames to selectively accommodate navigation data, and selectively transmitting the generated navigation data structure with the configured navigation data to a satellite navigation receiver in reduced time to enable faster access to the navigation data and to reduce time to first fix (TTFF) for civilian users and restricted users. The method and the system disclosed herein provide a signal generation system, for example, in each of multiple satellites of a constellation. The signal generation system generates a navigation signal comprising a navigation data structure. The navigation data structure is configured to selectively accommodate navigation data. The navigation data structure disclosed herein comprises a first sub-frame, a second sub-frame, and a third sub-frame. The signal generation system configures the first sub-frame and the second sub-frame to accommodate selective ephemeris data of the navigation data. The configuration of the first sub-frame and the second sub-frame reduces time for collecting the ephemeris data by the satellite navigation receiver. The signal generation system configures the third sub-frame to accommodate a text message comprising almanac data, ionospheric data, coordinated universal time (UTC) data, textual data, for example, user defined data, and any combination thereof. The configuration of the third sub-frame reduces time for collecting the almanac data, the ionospheric data, the UTC data, and the textual data by the satellite navigation receiver.
[0024]The signal generation system selectively groups the almanac data, the ionospheric data, and the coordinated universal time (UTC) data. For example, the signal generation system groups the UTC data with the ionospheric data, or the almanac data with the ionospheric data. In an embodiment, the signal generation system verifies integrity of the navigation data in the first sub-frame, the second sub-frame, and the third sub-frame of the generated navigation data structure for determining accuracy of the navigation data. The signal generation system selectively transmits the ephemeris data, the selectively grouped almanac data, ionospheric data, and UTC data, and the textual data in the generated navigation data structure to the satellite navigation receiver. The signal generation system alternatively transmits the ionospheric data and the UTC data with the almanac data and free of the almanac data in the third sub-frame in the generated navigation data structure to transmit the navigation data in reduced time, thereby reducing the TTFF in the satellite navigation receiver. Furthermore, the method and the system disclosed herein enable each of the satellites of a constellation to simultaneously and selectively transmit the selective ephemeris data, the selectively grouped almanac data, ionospheric data, and UTC data, and the textual data in the generated navigation data structure to the satellite navigation receiver, thereby allowing the satellite navigation receiver to collectively receive the selective ephemeris data, the almanac data, the ionospheric data, the UTC data, and the textual data in reduced time, thereby further reducing the TTFF in the satellite navigation receiver.
[0025]In an embodiment for reducing TTFF in a satellite navigation receiver in a single frequency of operation, the signal generation system configures the third sub-frame of the generated navigation data structure to accommodate a text message having only the ionospheric data and the coordinated universal time (UTC) data. The configuration of the third sub-frame reduces time for collecting the ionospheric data and the UTC data by the satellite navigation receiver. In an embodiment, the signal generation system determines a mode of operation for transmitting the navigation data in the generated navigation data structure. The mode of operation is, for example, a civilian mode or a restricted mode. The signal generation system transmits the ephemeris data, the ionospheric data, and the UTC data free of the almanac data in the generated navigation data structure to the satellite navigation receiver in the determined mode of operation, thereby reducing the TTFF in the satellite navigation receiver. The ionospheric data and the UTC data are transmitted by one of multiple satellites of a constellation to the satellite navigation receiver. Furthermore, in this embodiment, the signal generation system alters transmission of the navigation data after the transmission of the ionospheric data and the UTC data to further reduce the TTFF in the satellite navigation receiver.
[0026]In the civilian mode of operation, the signal generation system staggers the navigation data in each of the sub-frames of the generated navigation data structure into a first portion and a second portion. In an embodiment, the signal generation system determines a mode of service, for example, a civilian mode of service, a restricted mode of service, etc., for transmitting the staggered navigation data in the generated navigation data structure. Each of multiple satellites of a constellation parallelly transmits each of the sub-frames of the generated navigation data structure comprising distinct staggered navigation data over a first carrier frequency, for example, the L5 frequency, and a second carrier frequency, for example, the S1 frequency in the determined mode of service to obtain the navigation data in reduced time, thereby reducing the TTFF in the satellite navigation receiver in the civilian mode of operation.
[0028]In the restricted mode of operation, the signal generation system staggers the navigation data in each of the sub-frames of the generated navigation data structure into a first portion and a second portion. In an embodiment, the signal generation system determines a mode of service, for example, a civilian mode of service, a restricted mode of service, etc., for transmitting the staggered navigation data in the generated navigation data structure. Each of the satellites of a constellation parallelly transmits each of the sub-frames over a first carrier frequency, for example, the L5 frequency, and a second carrier frequency, for example, the S1 frequency in the determined mode of service to obtain the navigation data in reduced time, thereby reducing the TTFF in the satellite navigation receiver in the restricted mode of operation. The signal generation system parallelly transmits each of the sub-frames by: sequentially transmitting the first portion and the second portion of each of the sub-frames over the first carrier frequency, and a complementary of the first portion and the second portion of each of the sub-frames over the second carrier frequency in a first mode of service, for example, the civilian mode of service to obtain time of week (TOW) data; sequentially transmitting the second portion of one sub-frame and the first portion of another sub-frame, and a complementary of the second portion of one sub-frame and the first portion of the other sub-frame over the first carrier frequency in a second mode of service, for example, the restricted mode of service; and sequentially transmitting the first portion of one sub-frame and the second portion of another sub-frame, and a complementary of the first portion of one sub-frame and the second portion of the other sub-frame over the second carrier frequency in the second mode of service, for example, the restricted mode of service. The first mode of service assists the second mode of service for availing the obtained TOW data in reduced time, thereby reducing the TTFF in the satellite navigation receiver.