Adaptive equalizer training circuit, modem apparatus and communication apparatus
a technology of modem apparatus and equalizer, applied in the field of adaptive equalizer training circuit, modem apparatus and communication apparatus, can solve the problems of reducing reliability and calculation amount, and achieve the effect of reducing the number of errors after convergen
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
embodiment 1
(Embodiment 1)
[0045]Before explaining a modem apparatus equipped with an adaptive equalizer training circuit according to the present invention, an example of channel connection mode, which will be constructed via this modem apparatus will be briefly explained with reference to FIG. 15.
[0046]A telephone station, which serves as a station to accommodate a carrier is connected with a subscriber's residence, which is a user residence, via copper cable 21. At the subscriber's residence, telephone set 23 is connected with ADSL terminal side apparatus 24 via splitter 22. Furthermore, a personal computer 26 is connected to ADSL terminal side apparatus 24 via local network 25 such as 10BASE-T as a communication terminal apparatus. At the telephone station, exchange 28 and hub (or router) 29 are connected via ADSL station side apparatus 27.
[0047]When communication terminal apparatus 26 carries out data communication, a training signal compliant with an ADSL system standard is sent between AD...
embodiment 2
(Embodiment 2)
[0065]In order to allow tap coefficient b(t) of the adaptive equalizer to converge normally, this embodiment inputs initial value b0(t) of the target impulse response obtained by the initial impulse response time window section to the target signal response updating section as an initial value of tap coefficient b(t).
[0066]FIG. 10 is an overall diagram of a communication system that trains a tap coefficient of an adaptive equalizer mounted on receiver 1100. The parts having the same functions as those in Embodiment 1 above are assigned the same reference numerals.
[0067]In receiver 1100, initial value b0(t) of the target impulse response obtained by initial impulse response time window section 1101 is input to target signal response updating section 1102 as an initial value of tap coefficient b(t). The rest of the configuration is the same as that of the embodiment above. FIG. 11 shows a block diagram of initial impulse response time window section 1101 and FIG. 12 show...
embodiment 3
(Embodiment 3)
[0070]This embodiment carries out averaging of reception signal y(t) and carries out training of the tap coefficient based on the averaging result, and thereby suppresses mixing of noise signals.
[0071]As described in Embodiment 1 above, signal y(t) received by the receiver contains mixed noise signal n(t). When the noise signal is mixed in, convergence of the tap coefficient starts to fluctuate. Moreover, when the noise level exceeds a certain degree, the tap coefficient may not converge either. Thus, this embodiment carries out averaging of reception signal y(t) to suppress mixing of noise signals.
[0072]FIG. 13 is an overall diagram of a communication system that trains the tap coefficient of an adaptive equalizer mounted on receiver 1500. The parts having the same functions as those in Embodiment 1 above are assigned the same reference numerals. In this embodiment, receiver 1500 does not directly give reception signal y(t) to the training circuit, but inputs receptio...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com