Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Semiconductor device and method for manufacturing the same

Inactive Publication Date: 2014-06-26
SEMICON ENERGY LAB CO LTD
View PDF6 Cites 58 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention relates to a semiconductor device including an oxide semiconductor film with improved electrical characteristics. The invention provides a method for manufacturing the semiconductor device with a channel formation region having a small amount of oxygen vacancy, which reduces contact resistance and improves conductivity. The invention also provides a semiconductor device with low off-state current, low leakage current through an insulating film, high mobility, low power consumption, and high switching characteristics. The invention also provides a novel semiconductor device.

Problems solved by technology

Alternatively, damage (oxygen vacancy) to the top surface of the oxide semiconductor film is caused when the conductive film to be the source electrode and the drain electrode is formed over the oxide semiconductor film.
However, the conductive film is also in contact with a channel formation region in the oxide semiconductor film, and thus oxygen vacancy is also caused in a region of the channel formation region in the vicinity of the interface with the conductive film; as a result, a defect of electrical characteristics of the transistor might occur.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Semiconductor device and method for manufacturing the same
  • Semiconductor device and method for manufacturing the same
  • Semiconductor device and method for manufacturing the same

Examples

Experimental program
Comparison scheme
Effect test

embodiment 1

[0083]In this embodiment, a semiconductor device of one embodiment of the present invention is described with reference to drawings.

[0084]FIGS. 1A to 1C are a top view and cross-sectional views illustrating a transistor of one embodiment of the present invention. FIG. 1A is the top view, and a cross section taken along a dashed-dotted line A1-A2 and a dashed-dotted line A3-A4 in FIG. 1A corresponds to FIG. 1B. FIG. 1C is an enlarged view of a region surrounded by a circle of a dotted line in FIG. 1B. Note that some components in the top view in FIG. 1A are not illustrated for simplification of the drawing.

[0085]A transistor 150 illustrated in FIGS. 1A to 1C includes a base insulating film 102 over a substrate 100; a multilayer film 104 including an oxide semiconductor film over the base insulating film 102; a low-resistance region 105a and a low-resistance region 105b over the multilayer film 104; a source electrode 106a over the low-resistance region 105a; a drain electrode 106b ov...

embodiment 2

[0208]In this embodiment, a method for manufacturing the transistor 150 described in Embodiment 1 with reference to FIGS. 1A to 1C is described.

[0209]First, the base insulating film 102 is formed over the substrate 100.

[0210]A glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like can be used as the substrate 100. Alternatively, a single crystal semiconductor substrate or a polycrystalline semiconductor substrate made of silicon, silicon carbide, or the like, a compound semiconductor substrate made of silicon germanium or the like, a silicon-on-insulator (SOI) substrate, or the like may be used. Still alternatively, any of these substrates further provided with a semiconductor element may be used.

[0211]The base insulating film 102 can be formed by a plasma chemical vapor deposition (CVD) method, a sputtering method, or the like using an oxide insulating film of aluminum oxide, magnesium oxide, silicon oxide, silicon oxynitride, gallium oxide, ger...

embodiment 3

[0297]In this embodiment, a transistor having a structure different from that of the transistor described in Embodiment 1 is described.

[0298]FIGS. 10A to 10C are a top view and cross-sectional views of a transistor of one embodiment of the present invention. FIG. 10A is a top view, and a cross section taken along a dashed-dotted line B1-B2 and a dashed-dotted line B3-B4 in FIG. 10A is illustrated in FIG. 10B. FIG. 10C is an enlarged view of a region surrounded by a dashed-line circle in FIG. 10B. Note that for simplification of the drawing, some components in the top view in FIG. 10A are not illustrated.

[0299]A transistor 250 illustrated in FIGS. 10A to 10C includes: the gate electrode 110 over the substrate 100; the gate insulating film 108 over the gate electrode 110; the multilayer film 104 over the gate insulating film 108; the low-resistance region 105a and the low-resistance region 105b over the multilayer film 104; the source electrode 106a over the low-resistance region 105a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A semiconductor device having a reduced amount of oxygen vacancy in a channel formation region of an oxide semiconductor is provided. Further, a semiconductor device which includes an oxide semiconductor and has improved electric characteristics is provided. Furthermore, a methods for manufacturing the semiconductor device is provided. An oxide semiconductor film is formed; a conductive film is formed over the oxide semiconductor film at the same time as forming a low-resistance region between the oxide semiconductor film and the conductive film; the conductive film is processed to form a source electrode and a drain electrode; and oxygen is added to the low-resistance region between the source electrode and the drain electrode, so that a channel formation region having a higher resistance than the low-resistance region is formed and a first low-resistance region and a second low-resistance region between which the channel formation region is positioned are formed.

Description

TECHNICAL FIELD[0001]The present invention relates to a product (including a machine, a manufacture, and a composition of matter) and a process (including a simple process and a production process). In particular, one embodiment of the present invention relates to, a semiconductor device, a display device, a light-emitting device, a power storage device, a driving method thereof, or a manufacturing method thereof. In particular, one embodiment of the present invention relates to a semiconductor device including an oxide semiconductor, a display device including an oxide semiconductor, or a light-emitting device including an oxide semiconductor.BACKGROUND ART[0002]Transistors used for most flat panel displays typified by a liquid crystal display device and a light-emitting display device are formed using silicon semiconductors such as amorphous silicon, single crystal silicon, and polycrystalline silicon provided over glass substrates. Further, transistors formed using such silicon s...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H01L29/786
CPCH01L29/45H01L29/66969H01L29/78696H01L29/78618H01L29/7869
Inventor YAMAZAKI, SHUNPEISUZAWA, HIDEOMITANAKA, TETSUHIROWATANABE, HIROKAZUSATO, YUHEIYAMANE, YASUMASAMATSUBAYASHI, DAISUKE
Owner SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products