Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method of use of an ionic liquid and device for sorption of a gas

a technology of ionic liquid and gas, which is applied in the direction of hydrogen sulfide, machine/engine, combustion air/fuel air treatment, etc., can solve the problems of cost-intensive removal of known cosub>2 processes, and achieve the effect of saving to use or less expensiv

Inactive Publication Date: 2012-05-31
PROIONIC
View PDF6 Cites 16 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006]It may be an objective of the invention to provide a method of removal of a gaseous or vaporous component and a device for removal of a gaseous or vaporous component which may be save to use or less expensive than known methods.
[0011]In particular, the device may comprise an inlet, a container including the ionic liquid, and optionally an outlet. The device may be used to sorb gas having an electric multipole moment, e.g. CO2, from a medium which is selected out of the group consisting of recovery gas, synthesis gas, water gas, natural gas, inhaled air, and exhaled air. In particular, the device may be a heat pump. The heat pump may comprise a circuit including CO2 and the ionic liquid which comprises an anion and a non-aromatic cation as working media. In particular, the usage of a pair of working media containing CO2 and an ionic liquid in a heat pump may be advantageous since CO2 is not toxic is of less concern with respect to environmental effect compared to other vaporizable working substances.
[0013]The use of non-aromatic cations of the ionic liquid may provide for an ionic liquid which may be cheaper and more secure than the use of aromatic cations. Such ionic liquids may be a suitable medium to sorb specific gases, e.g. CO2, or vapor out of a mixture of gases and may also be suitable to release these specific gases or vapor again. The specific gases and the ionic liquid may form a complex, i.e. the specific gases may be complex bound. According to some exemplary embodiments it may even be possible to remove the complex bound in the form of a solid compound. The uses of such ionic liquids for sorption of gases may be advantageous since ionic liquids may be used showing no or at least substantially no vapor pressure, e.g. a non measureable vapor pressure or even a vapor pressure in the same magnitude of order of steel. Thus, the gases or mixture of gases may not be contaminated by vapor of the ionic liquid. Furthermore, the use of non-aromatic ionic liquids may increase the performance of the sorption process compared to the case in which aromatic ionic liquids are used. For example, the removal of CO2 by using non-aromatic ionic liquids may exhibit an improved performance even in cases where the vapor pressure of CO2 is low.
[0017]Aliphatic cations may be suitable non-aromatic cations for an ionic liquid which are less expensive and / or less toxic than typical aromatic cations.

Problems solved by technology

However, the known processes of removal CO2 may be costly.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method of use of an ionic liquid and device for sorption of a gas
  • Method of use of an ionic liquid and device for sorption of a gas
  • Method of use of an ionic liquid and device for sorption of a gas

Examples

Experimental program
Comparison scheme
Effect test

example 1

Sorption of Hydrogen Sulphide

[0076]The experiment was performed at room temperature and a vapor pressure equilibrium of 338 hPa. A beaded bottle is flushed with 120 ml of hydrogen sulphide by using two needles. One of the needles is connected to a manometer having a resolution of 1 hPa. Subsequently 1 ml of TOMA-acetate is injected into the bottle by using one of the needles, wherein the TOMA-acetate was preheated by a hairdryer in order to reduce the viscosity. After 30 minutes of stirring by using a magnetic stir bar a constant reduction of the pressure of 622 hPa was observed. This pressure reduction corresponds to a molar ratio of 0.26 moIH2S / molIL at an equilibrium pressure of 338 hPa. For comparison, a 30% aqueous solution of monoethanolamine provides, under the same conditions, a pressure reduction of 651 hPa which corresponds to a molare ratio of 0.11 molH2S / molL at an equilibrium pressure of 309 hPa.

example 2

Sorption of Carbon Dioxide

[0077]The experiment was performed at room temperature and a vapor pressure equilibrium of 523 hPa. A beaded bottle is flushed with 120 ml of carbon dioxide by using two needles. One of the needles is connected to a manometer having a resolution of 1 hPa. Subsequently 1 ml of TOMA-acetylacetonate is injected into the bottle by using one of the needles, wherein the TOMA-acetylacetonate was preheated by a hairdryer in order to reduce the viscosity. After 30 minutes of stirring by using a magnetic stir bar a constant reduction of the pressure of 437 hPa was observed. This pressure reduction corresponds to a molar ratio of 0.18 molCO2 / molIL at an equilibrium pressure of 523 hPa. For comparison, a 30% aqueous solution of monoethanolamine provides, under the same conditions, a pressure reduction of 670 hPa which corresponds to a molare ratio of 0.12 molCO2 / molL at an equilibrium pressure of 290 hPa.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Multipole momentaaaaaaaaaa
Adsorption entropyaaaaaaaaaa
Electric quadrupole momentaaaaaaaaaa
Login to View More

Abstract

A method of use of an ionic liquid for sorption of a gas having an electric multipole moment is provided, wherein the ionic liquid comprises an anion and a non-aromatic cation. In particular, the electric multipole moment may be an electric dipole moment and / or an electric quadrupole moment. The sorption may be an adsorption or an absorption. The ionic liquid may be a pure ionic liquid, i.e. a liquid substantially only containing anions and cations, while not containing other components, e.g. water. Alternatively a solution containing the ionic liquid and a solvent or further compound, e.g. water, may be used.

Description

FIELD OF THE INVENTION[0001]The invention relates to a method of use of an ionic liquid, in particular for sorption of a gas or vapor having an electric multipole moment.[0002]Further, the invention relates to a device for sorption of a gas or vapor.BACKGROUND OF THE INVENTION[0003]Carbon dioxide (CO2) is an undesired diluent that is present in many gas sources. In order to improve the quality of the gases the CO2 should be removed to acceptable specifications. In gas processing industry, various technologies have been employed for CO2 removal including chemical solvents, physical solvents, and membranes. By far, chemical solvents that reversibly react with CO2 are most commonly used for CO2 removal.[0004]Furthermore, processes for removal of CO2 from gaseous streams are known, which comprise the contacting a CO2 containing gaseous stream with an absorbent comprising from 1 to 20 wt % water and an ionic liquid comprising pyridines or imidazole cations and an anion, wherein said cont...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B01D53/02B01D53/14B01F3/04B01D53/18
CPCB01D53/1456B01D53/1493Y02C10/08Y02C10/06B01D2252/30Y02C20/40C07C211/63C07C381/12C07F9/54
Inventor KALB, ROLAND
Owner PROIONIC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products