Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Solvent tolerant microorganisms and methods of isolation

a technology of solvent-tolerant microorganisms and methods, applied in the field of industrial microorganisms, can solve the problems of limited butanol biological production, high cost, and general cost of the process

Inactive Publication Date: 2010-04-15
BUTAMAXTM ADVANCED BIOFUELS
View PDF1 Cites 35 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

These processes use starting materials derived from petrochemicals, are generally expensive, and are not environmentally friendly.
However, biological production of butanols is believed to be limited by butanol toxicity to the host microorganism used in the fermentation.
However, for most microorganisms described in the art, growth is totally inhibited at a concentration of less than 2.0% w / v 1-butanol when grown in a liquid medium at 37° C. Moreover, microbial strains that have a tolerance to 2-butanol and isobutanol are not known in the art.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Isolation of Butanol Tolerant Microorganisms

[0153]The purpose of this Example was to isolate butanol tolerant microorganisms. Environmental samples were obtained from several wastewater treatment sites and were grown in enrichment cultures containing 1-butanol in shake flasks. A butanol tolerant bacterial strain was isolated and identified as Enterococcus faecium.

[0154]Environmental sludge samples were obtained from wastewater treatment facilities at several E.I. du Pont de Nemours and Company sites. Enrichment cultures were established for each sample by inoculating a 125-mL screw cap Erlenmeyer flask with 1 mL of a sludge sample in 10 mL of minimal enrichment medium (i.e., 10 mM ammonium sulfate, 50 mM potassium phosphate buffer, pH 7.0, 2 mM MgCl2, 0.7 mM CaCl2, 50 μM MnCl2, 1 μM FeCl3, 1 μM ZnCl2, 1.72 μM CuCl2, 2.53 μM CoCl2, 2.42 μM Na2MoO4, 2 μM thiamine hydrochloride, 0.5% glucose, 0.5% fructose, 0.5% sucrose and 0.1% yeast extract). The enrichment cultures were incubated a...

example 2

Isolation of Butanol Tolerant Bacterial Strains Using Continuous Culture

[0156]The purpose of this Example was to isolate butanol tolerant bacterial strains. Environmental samples were obtained from several wastewater treatment sites and were grown in the presence of 1-butanol in continuous culture in a chemostat bioreactor. Several 1-butanol tolerant bacterial strains were isolated and identified as different species of Enterococcus.

[0157]An Appilikon Fermentor (Appilikon Inc., Clinton, N.J.) was operated as an anaerobic chemostat. This bioreactor system was composed of a 1-L dished bottom reactor, Controller ADI 1032 P100, and stirrer unit with marine and turbine impellers. Bio Controller ADI 1030 Z510300020 with appropriate sensors was used to monitor pH, dissolved oxygen, and temperature. A Cole Parmer pump and pump head (Cole Parmer Instrument Co., Vernon Hills, Ill.) were used for addition of acid and base to maintain the culture medium at pH 7.0. The temperature was maintaine...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Enterococcus bacteria having enhanced tolerance to butanols have been isolated. The bacteria are useful for the fermentive production of butanol. New methods for the isolation of butanol tolerant Enterococcus are also provided.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application is a divisional of and claims the benefit of priority to U.S. application Ser. No. 11 / 743,220, filed May 2, 2007, which claims the benefit of priority to U.S. Provisional Application No. 60 / 798,417, filed May 5, 2006. The entirety of each is herein incorporated by reference.FIELD OF THE INVENTION[0002]The invention relates to the field of industrial microbiology. Specifically, microorganisms have been isolated that demonstrate high tolerance to alcohols, particularly butanols.BACKGROUND OF THE INVENTION[0003]Butanol is an important industrial chemical, useful as a fuel additive, as a feedstock chemical in the plastics industry, and as a foodgrade extractant in the food and flavor industry. Each year 10 to 12 billion pounds of butanol are produced by petrochemical means and the need for this commodity chemical will likely increase.[0004]Methods for the chemical synthesis of butanols are known. For example, 1-butanol may be...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C12Q1/04
CPCC12N1/20C12P7/16Y02E50/10C12R1/46C12P7/26C12R2001/46C12N1/205
Inventor BRAMUCCI, MICHAEL G.NAGARAJAN, VASANTHASEDKOVA, NATALIASINGH, MANJARI
Owner BUTAMAXTM ADVANCED BIOFUELS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products