System and method for increasing reliability of electrical fuse programming
a technology of electrical fuse and programming method, which is applied in the field of semiconductor electrical fuse (efuse) technology, can solve the problems of reducing affecting limiting the overall accuracy of encoded data, so as to improve the programming reliability of e-fuse devices, increase the accuracy and reliability of coded information, and improve the reliability of fuses. the effect of reliability
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
first embodiment
[0042] To insure that the fuse programming information is coded reliably, redundancy in the e-fuse coding is implemented in the semiconductor chip. the redundancy is achieved by programming multiple e-fuses with different fuselink dimensions (e.g., widths, lengths or combinations thereof). Despite the wide variation of the programming current, as shown in FIG. 3, one of the multiple fuses will have the optimal level of programming current density (I_prog or I_on). Therefore, the coding of the information is reliable and accurate.
[0043] According to the first embodiment of the invention, an e-fuse device 100 for encoding optimal programming gate voltages is provided as shown in FIG. 4. As shown in FIG. 4, by way of an example e-fuse application, there are one or more bit cells numbered bitcell0, . . . , bitcelln to be programmed with a programmed bit voltage, with each bit cell implementing a redundant programming feature. Particularly, for each bit cell, there is provided multiple ...
second embodiment
[0049] Thus, as shown in the invention as depicted in the example e-fuse device shown in FIG. 5, each bit cell (1 bit) uses three identical sized fuses, each fuse having an associated programming transistor of varying sizes (e.g., channel widths or lengths), logically connected in an OR configuration. Thus, in a semiconductor device, one bit of information is encoded with three different fuses. As long as sufficient variation is provided in the sizes of the programming transistors such that all of the variation of the programming transistor is accounted for so that at least one of the fuses 110 is of the correct programming current density range.
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com