Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Polyvalent cation-sensing receptor in atlantic salmon

Inactive Publication Date: 2005-08-18
MARICAL
View PDF22 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0016] The present invention allows for a number of advantages, including the ability to more efficiently grow Atlantic Salmon, and in particular, transfer them to seawater with increased growth and reduce mortality. The technology of the present invention also allows for assaying or testing these salmon to determine if they are ready for transfer to seawater, so that they can be transferred at the optimal time. The technology of the present invention provides for the imprinting of salmon with an odorant so that the salmon, once imprinted, can later more easily recognize and / or distinguish the odorant. For example, an attractant that has been used to imprint salmon can be added to feed so that the salmon will consume more feed and grow at a faster rate. A number of additional advantages for the present invention exist and are apparent from the description provided herein.

Problems solved by technology

One problem complicating the effective restoration of wild Atlantic salmon is the lack of a fundamental understanding of how these deleterious environmental conditions effect the salmon's ability to home to freshwater streams from the ocean, interchangeably adapt to freshwater and seawater as well as feed and grow in both salinity environments.
However, fish hatcheries have experienced some difficulty in raising salmon because the window of time in which the pre-adult salmon adapts to seawater (e.g., undergoes smoltification) is short-lived, and can be difficult to pinpoint.
As a result, these hatcheries can experience significant morbidity and mortality when transferring salmon from freshwater to seawater.
Additionally, many of the salmon that do survive the transfer from freshwater to seawater are stressed, and consequently, experience decreased feeding, and increased susceptibility to disease.
Therefore, salmon often do not grow well after they are transferred to seawater.
The aquaculture industry loses millions of dollars each year due to problems it encounters in transferring salmon from freshwater to seawater.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Polyvalent cation-sensing receptor in atlantic salmon
  • Polyvalent cation-sensing receptor in atlantic salmon
  • Polyvalent cation-sensing receptor in atlantic salmon

Examples

Experimental program
Comparison scheme
Effect test

example 1

Molecular Cloning of Shark Kidney Calcium Receptor Related Protein (SKCaR)

[0159] A shark λZAP cDNA library was manufactured using standard commercially available reagents with cDNA synthesized from poly A+ RNA isolated from shark kidney tissue as described and published in Siner et al. Am. J. Physiol. 270:C372-C381, 1996. The shark cDNA library was plated and resulting phage plaques screened using a 32P-labeled full length rat kidney CaR (RaKCaR) cDNA probe under intermediate stringency conditions (0.5×SSC, 0.1% SDS, 50° C.). Individual positive plaques were identified by autoradiography, isolated and rescued using phagemid infections to transfer cDNA to KS Bluescript vector. The complete nucleotide sequence, FIG. 1, (SEQ ID NO: 1) of the 4.1 kb shark kidney PVCR related protein (SKCaR) clone was obtained using commercially available automated sequencing service that performs nucleotide sequencing using the dideoxy chain termination technique. The deduced amino acid sequence (SEQ I...

example 2

Expression / Activation Studies of SKCaR in Human Embryonic Kidney (HEK) Cells

[0160] PVCRs serve as salinity sensors in fish. These receptors are localized to the apical membranes of various cells within the fish's body (e.g., in the gills, intestine, kidney) that are known to be responsible for osmoregulation. A full-length cation receptor (CaR, also referred to as “PVCR”) from the dogfish shark has been expressed in human HEK cells. This receptor was shown to respond to alterations in ionic compositions of NaCl, Ca2+ and Mg2+ in extracellular fluid bathing the HEK cells. The ionic concentrations encompassed the range which includes the transition from freshwater to seawater. Expression of PVCR mRNA is also increased in fish after their transfer from freshwater to seawater, and is modulated by PVCR agonists. Partial genomic clones of PVCRs have also been isolated from other fish species, including winter and summer flounder and lumpfish, by using nucleic acid amplification with dege...

example 3

Defining Salinity Limits as an Assay to Identify Fish with Enhanced Salinity Responsive and Altered PVCR Function

[0172] Both anadromous fish (Atlantic salmon, trout and Arctic char) and euryhaline fish (flounders, alewives, eels) traverse from freshwater to seawater environments and back again as part of their lifecycles in the natural environment. To successful accomplish this result; both types of fish have to undergo similar physiological changes including alterations in their urine output, altering water intake and water absorption. In some cases, naturally occurring mutations to PVCR would provide for altered salinity adaptation capabilities that would have significant value for both commercial and environmental restoration uses. For example, identification of selective traits associated with PVCR mediated salinity responses might allow identification of new strains of fish for commercial aquaculture. Similarly, identification of selected environmental parameters from a host o...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Massaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

The present invention encompasses three full length nucleic acid and amino acid sequences for PolyValent Cation-Sensing Receptors (PVCR) in Atlantic Salmon. These PVCR have been named SalmoKCaR#1, SalmoKCaR#2, and SalmoKCaR#3. The present invention includes homologs thereof, antibodies thereto, and methods for assessing SalmoKCaR nucleic acid molecules and polypeptides. The present invention further includes plasmids, vectors, host cells containing the nucleic acid sequences of SalmoKCaR#1,2 and / or 3.

Description

RELATED APPLICATIONS [0001] This application is a divisional of Ser. No. 10 / 125,772, filed Apr. 18, 2002, which is a continuation-in-part of U.S. application Ser. No. 10 / 121,441, filed Apr. 11, 2002, now abandoned, which is a continuation-in-part of International Application No. PCT / US01 / 31704 (WO02 / 031149), which designated the United States, filed Oct. 11, 2001, now abandoned, which claims the benefit of U.S. Provisional Application No. 60 / 240,392, filed on Oct. 12, 2000, and U.S. Provisional Application No. 60 / 240,003, filed on Oct. 12, 2000. The entire teachings of the above applications are incorporated herein by reference.BACKGROUND OF THE INVENTION [0002] In nature, anadromous fish like salmon live most of their adulthood in seawater, but swim upstream to freshwater for the purpose of breeding. As a result, anadromous fish hatch from their eggs and are born in freshwater. As these fish grow, they swim downstream and gradually adapt to the seawater. [0003] Currently, wild Atla...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61K38/00C07K14/705
CPCA01K2227/40C07K2319/00C07K14/705A61K38/00
Inventor HARRIS, H.NEARING, JACQUELINEBETKA, MARLIES
Owner MARICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products