Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Soft threshold defense method for remote sensing image confrontation sample

A technology against samples and remote sensing images, applied in neural learning methods, instruments, biological neural network models, etc., can solve problems such as large amount of calculations, achieve simple and effective algorithms, and resist anti-deception effects

Active Publication Date: 2021-08-17
CENT SOUTH UNIV
View PDF3 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, these algorithms require model retraining and are computationally intensive
The second is to detect only

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Soft threshold defense method for remote sensing image confrontation sample
  • Soft threshold defense method for remote sensing image confrontation sample
  • Soft threshold defense method for remote sensing image confrontation sample

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0042] The present invention will be further described below in conjunction with the accompanying drawings, but the present invention is not limited in any way. Any transformation or replacement based on the teaching of the present invention belongs to the protection scope of the present invention.

[0043] According to the attack selectivity of RSI adversarial samples, the key to the soft threshold defense method is to correctly obtain the confidence threshold of each category. When the output confidence is higher than the threshold, it means that the input RSI is safe; while when the output confidence is lower than the threshold, the RSI may be an adversarial example, which is not safe.

[0044] Such as figure 1 As shown, a soft threshold defense method for remote sensing image adversarial samples disclosed in the present invention specifically includes the following steps:

[0045] S10: Save the correctly classified remote sensing image and the corresponding output confide...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a soft threshold defense method for remote sensing image confrontation samples, which comprises the following steps: storing correctly classified remote sensing images and confrontation samples in the same type of verification set, and deleting remote sensing images which cannot be correctly classified in the verification set; taking the original image as a positive sample, taking an adversarial sample as a negative sample, and reclassifying the stored images in the verification set; obtaining a new data set in combination with the classified output confidence; training a logistic regression model on the new data set; obtaining a threshold value of output confidence through decision boundaries of the original image and the adversarial sample; and comparing the output confidence of the current input image with the defense soft threshold, and judging whether the current input image is a confrontation sample or not. According to the method, the attack of the adversarial sample in the remote sensing image scene classification problem can be effectively defended, and the torpoxic rate of the convolutional neural network is reduced to 0.

Description

technical field [0001] The invention belongs to the technical field of remote sensing image classification, and in particular relates to a soft threshold defense method of remote sensing image confrontation samples. [0002] technical background [0003] Convolutional neural network (CNN) has excellent feature extraction ability and high accuracy, and has become a general technique for object recognition in the field of remote sensing. It is widely used in remote sensing fields such as disaster management, forest monitoring and urban planning. Well-performing CNNs can have high financial benefits. However, many studies have shown that CNNs are very vulnerable to adversarial samples, which are carefully generated and imperceptible, which can make the model predict wrong results with high confidence. Adversarial examples have become the most concerned security issue for CNNs in practical applications. Adversarial examples demonstrate the vulnerability of convolutional neural...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G06K9/62G06N3/04G06N3/08
CPCG06N3/08G06N3/047G06N3/048G06N3/045G06F18/241G06F18/2415
Inventor 陈力李海峰李奇段加乐鲁鸣鸣
Owner CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products