Application of a polyester amide as a high temperature resistant heat shrinkable film
A heat-shrinkable film and polyester amide technology, which is applied in the application field of polyester amide as a heat-shrinkable film, can solve the problems of poor heat resistance of heat-shrinkable films and achieve the effect of shrinkage performance
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0047] The preparation of heat-shrinkable film 1 specifically comprises the following steps:
[0048] Take 22.4g of tall oil-based dimer acid, 3.4g of 1,3-diamino-2-propanol, and 40mg of sodium phosphite into a three-necked flask, mix them uniformly with a mechanical stirrer under a nitrogen atmosphere at 80°C and heat them for 1 hour, then raise the temperature to 140 °C for 12 hours, then raised the temperature to 180 °C for 6 hours, then raised the temperature to 230 °C for 2 hours, and finally cooled the reaction system to 140 °C. After the reaction, the product was named polyester amide 1.
[0049] The polyester amide 1 was subjected to sheeting and uniaxial stretching, the stretching speed was 10 mm / min, the stretching strain was 150%, and the stretched product was named heat-shrinkable film 1.
Embodiment 2
[0051] The preparation of heat-shrinkable film 2 specifically comprises the following steps:
[0052]Take 20.8g of tall oil-based dimer acid, 3.4g of 1,3 diamino-2-propanol, and 40mg of sodium phosphite into a three-necked flask, mix them uniformly with a mechanical stirrer under a nitrogen atmosphere at 80°C and heat them for 1 hour, then raise the temperature to 140 °C for 12 hours, then raised the temperature to 180 °C for 6 hours, then raised the temperature to 230 °C for 2 hours, and finally cooled the reaction system to 140 °C. After the reaction, the product was named polyester amide 2.
[0053] The polyester amide 2 was subjected to sheeting and uniaxial stretching, the stretching speed was 10 mm / min, the stretching strain was 150%, and the stretched product was named heat-shrinkable film 2.
Embodiment 3
[0055] The preparation of heat-shrinkable film 3 specifically comprises the following steps:
[0056] Take 19.2g of tall oil-based dimer acid, 3.4g of 1,3 diamino-2-propanol, and 40mg of sodium phosphite into a three-necked flask, mix them uniformly with a mechanical stirrer under a nitrogen atmosphere at 80°C and heat for 1 hour, then raise the temperature to 140 °C for 12 hours, then raised the temperature to 180 °C for 6 hours, then raised the temperature to 230 °C for 2 hours, and finally cooled the reaction system to 140 °C. After the reaction, the product was named polyester amide 3.
[0057] The polyester amide 3 was subjected to sheeting and uniaxial stretching, the stretching speed was 10 mm / min, the stretching strain was 150%, and the stretched product was named heat-shrinkable film 3 . Such as figure 1 Shown: After the raw material tall oil-based dimer acid of the present invention is reacted according to Example 1, the carboxyl peak basically disappears, and the p...
PUM
Property | Measurement | Unit |
---|---|---|
breaking strength | aaaaa | aaaaa |
tensile strain | aaaaa | aaaaa |
shrinkage | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com