Planetary scale assimilation and machine learning external forcing based climate mode prediction method
A machine learning and model technology, used in forecasting, complex mathematical operations, computer-aided design, etc., can solve the problems of not being used as a forecast basis, single, and forecasting technology is not predictable, etc., to improve climate forecast results and forecast time periods. Short, reliable results
Active Publication Date: 2021-05-18
LANZHOU UNIVERSITY
View PDF3 Cites 5 Cited by
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
[0004] my country's model-based technology is in its infancy. At present, it mainly uses a single climate (or Earth system model) method to assimilate existing observation data, and mainly uses statistical methods. This method is linear, and the "external forcing" signal used "is the sea temperature of the Pacific Ocean (the signal of air-sea interaction - ENSO) and the snow cover of the Qinghai-Tibet Plateau considered as a whole. When the changes of the two are within the normal range, the prediction technology is not predictable
There are also some results of climate models, but they are not used as the main basis for prediction
Method used
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View moreImage
Smart Image Click on the blue labels to locate them in the text.
Smart ImageViewing Examples
Examples
Experimental program
Comparison scheme
Effect test
Embodiment
[0049] When used, the 500hPa geopotential height field forecast 2 months in advance (ie the 3rd month of forecast) and the skill score AC of EAR5 (ie: the fifth generation ECMWF atmospheric reanalysis global climate data) (such as image 3 shown). The global AC average is about 52.8%. The current AC forecast 10 days in advance is less than 50% (eg figure 1 shown).
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More PUM
Login to View More
Abstract
The invention relates to a planetary scale assimilation and machine learning external forcing based climate mode prediction method. The mode comprises the following steps: (1) separating 1-3 wave information in a background field; (2) forming initial conditions of a mode by using a flow-dependent assimilation technology; (3) forming a sea temperature external forced field of a climate mode by adopting a machine learning method; (4) performing modeling by adopting a machine learning method to form a land external forced field of a climate mode; (5) carrying out modeling on the frozen circle slow change signal through machine learning by means of observation and reanalysis data, obtaining a cross-seasonal extrapolation prediction value of the frozen circle signal, wherein the prediction value serves as a mode exogenous forcing item; (6) forming an atmospheric boundary field; (7) performing seasonal climate prediction; (8) checking and correcting to obtain a revised value; (9) superposing the nonlinear information and the linear change information as a predicted value; and (10) gathering the revised value and the predicted value according to a historical fitting rate to obtain a final prediction result. The climate prediction result can be effectively improved.
Description
technical field [0001] The invention relates to the technical field of climate prediction, in particular to a climate model prediction method assimilating planetary scale and machine learning external forcing. Background technique [0002] Cross-seasonal climate forecasting refers to climate forecasting with a forecast period ranging from 2 weeks to 1 season. Western developed countries, led by the European Community and the United States, have made remarkable achievements in the field of short-to-medium-term numerical weather prediction. At present, the 1-5 day numerical weather prediction technology in Europe has achieved satisfactory results, and has achieved satisfactory results in the field of Widely used in business. However, the climate forecast results for more than 10 days are not satisfactory, such as figure 1 As shown, especially the 15-30-day and monthly-scale climate prediction is in the exploratory stage, which is far from meeting people's needs, and it is no...
Claims
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More Application Information
Patent Timeline
Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G06Q10/04G06F30/27G06F17/18G06F119/08
CPCG06Q10/04G06F30/27G06F17/18G06F2119/08Y02A90/10
Inventor 王澄海张飞民杨毅王灏杨凯
Owner LANZHOU UNIVERSITY
Who we serve
- R&D Engineer
- R&D Manager
- IP Professional
Why Patsnap Eureka
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com