Sense circuit for reading data stored in nonvolatile memory cells

Inactive Publication Date: 2000-02-22
STMICROELECTRONICS SRL
View PDF23 Cites 39 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

Basically, the device for generating an unbalance between a reference cell branch of the sense circuit and another branch of the circuit comprising the selectively addressed array cell to be read, which is employed is basically a current generator and therefore, as in the case of a currentoffset sense circuit of the prior art, the sizes of the load transistors of the array side and of the reference side of the differential sense circuit are advantageously identical, thus avoiding the above mentioned drawbacks typical of a load-unbalance sense circuit. The circuit is driven essentially by the same gate voltage which is present on the array cells and for this purpose it is necessary to introduce in the array of cells a supplementary row which is decoded at every reading, and which replicates during transients the behaviour of the array's row which is selected for reading.

Problems solved by technology

The reduction of the size of the devices poses serious problems to the achievement of these aims.
Clearly the .Iadd.current-unbalance .Iaddend.system .Iadd.of FIG. 2 .Iaddend.has limitations, in static terms, toward the value of VCC.sub.max and this constitutes a drawback.
In fact, while for the case of a load-unbalance system, the current in the two branches (reference side and array side) of the sense circuit are intrinsically different for any value of the gate voltage of the cells (and therefore the circuit provides a correct sensing during a transient), in the case of a current-offset sense circuit, because the circuit is powered at VCC, there is not a transient phase for the value of the current set by the offsetting circuit and therefore, when an OFF-programmed cell must be read, the sense circuit initially provides an erroneous response because the reference side current, for a low value of the voltage applied to the gate of the array cell and of the reference cell, is lower than the current of the array side, which current represents the sum of the offsetting current, which is intrinsically constant, and of the current of the OFF-programmed cell, which is practically nil.
This limitation at transients negatively affects the access time in comparison to the case where a load-unbalance sense circuit is used, which, on the other hand, has the disadvantage of providing a reduced operating voltage range, as seen before.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Sense circuit for reading data stored in nonvolatile memory cells
  • Sense circuit for reading data stored in nonvolatile memory cells
  • Sense circuit for reading data stored in nonvolatile memory cells

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

For simplicity's sake, in the circuit diagram of FIGS. 5 and 8, only the offsetting current generating circuit of the offset-current-type sense circuit as shown in FIG. 3 is depicted; the circuit nodes M and N of the circuit of FIG. 3 being indicated in the so-partialized circuit diagrams of FIGS. 5 and 8.

Moreover the label DUMMY ROW used in FIGS. 5 and 8, indicates a drive voltage line derived from a supplementary row of cells of the array of cells which is decoded at every reading and which therefore replicates perfectly the behaviour of .[.anyone.]. .Iadd.current unbalance .Iaddend.row of memory cells of the array which is selected for reading, during a transient.

Normally, the reference column line, REFERENCE BITLINE, serves a certain number of column lines, MATRIX BITLINE, of the array and to these is adjacently formed on the silicon chip so as to make as similar as possible the voltages present on the gate of the reference cell and on the gate of a selected cell of the array al...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A sense circuit for reading EPROM and ROM type memory cells employs a circuit for generating an offsetting current which is exempt of error during transients and which thus permits to achieve a reduced access time. On the other hand, the sense circuit maintains the intrinsic advantages of a current-offset sensing architecture which is represented by a substantially unlimited operating voltage range toward the maximum value VCCmax. The current generating circuit is driven by means of a supplementary row of cells which is decoded at every reading and which replicates, during transients, the behaviour of the row selected for the reading.

Description

BACKGROUND OF THE INVENTIONThe present invention relates to a circuit for reading the information stored in ROM and EPROM type memories according to a differential sensing mode and, in particular to an improved circuit for generating an offsetting current for discriminating between the currents which flow through a certain cell of the memory array which has been selectively addressed for reading and a virgin reference cell, according to a current offset sensing mode.Among semiconductor nonvolatile memories, EPROM memories represent one of the most advanced field of integration in silicon. Starting from nowadays common 1 megabit devices, new devices with a capacity of up to 4 megabit have been presented lately and new ambitious goals are announced.Together with an ever increasing packing density, the memory market requires improved performances in terms of access time, write time and power consumption. The reduction of the size of the devices poses serious problems to the achievement...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G11C16/06G11C16/28G11C11/419G11C17/00G11C17/18
CPCG11C16/28
Inventor PASCUCCI, LUIGIOLIVO, MARCO
Owner STMICROELECTRONICS SRL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products