Clean-burning aviation gasoline additive to eliminate valve seat recession and deposits
a technology of aviation gasoline and additives, which is applied in the petroleum industry, liquid carbonaceous fuels, fuel additives, etc., can solve the problems of limited valve seat recession in engines using such fuels, longer engine life, and longer so as to prolong engine life and prolong engine life. the effect of the time between engine overhauls
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 3
[0043]Aviation gasoline blend comprising at least one C4-C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a potassium-based anti-VSR additive. The result was a limited level of valve recession, still within tolerance, but sludge and grime were excessive and difficult to remove. Potassium tends to cake-up and form chunks of debris which can be dangerous when dislodged in the combustion or exhaust chamber.
example 4
[0044]Aviation gasoline blend comprising at least one C4-C10 aliphatic hydrocarbon and at least one oxygenated compound, with less than 5% arene hydrocarbons and no amines or organometallic compounds, having a motor octane of at least 99.6 MON was tested with a manganese-based anti-VSR additive (MMT). The result was a limited level of valve recession, but sludge and grime were excessive. Spark plug deposits shut down the engine between regular cleaning intervals. MMT tends to cake-up and form chunks of debris which can be dangerous when dislodged in the combustion chamber.
example 5
Additive
[0045]The response of the Additive package of this invention was tested in several different test engine runs using SAE standard testing for the response of the Additive package. The standard calls for a 250-hour test, with the engine under full load. In total, 13 of these test engines were run the full 250 hours to evaluate additive response. This test was conducted on a nominal blend of 100R, a clean-burning aviation gasoline with 75% aliphatic hydrocarbons and 25% oxygenates (m / m) with the maximum treat rate prescribed by the SPEC-100R-18 specification. In addition, 8 other full runs were conducted with decreasing amounts of the Additive package in this invention.
[0046]The piston engines were purchased new, fully dimensionally measured, and reassembled before the run. Oil was changed initially at 25 hours and thereafter every 50 hours. For comparison of data, 100LL avgas with tetraethyllead and ethanol-free automotive gasoline were each run on a full additive test engine....
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com