Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Compostable wet-laid articles comprising cellulose and cellulose esters

a technology of cellulose and cellulose esters, which is applied in the field of compositions and wet-laid articles, can solve the problems of increasing energy costs

Inactive Publication Date: 2020-02-27
EASTMAN CHEM CO
View PDF2 Cites 28 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The patent describes a composition that includes both cellulose fibers and CE staple fibers. The CE staple fibers are not refined or fibrillated before being combined with the cellulose fibers. This is important because refining the CE staple fibers can damage them and make them less effective. The composition can also contain non-fibrillated CE staple fibers, which are not refined. The non-fibrillated CE staple fibers have a low degree of substitution, meaning they contain less fibrils than refined fibers. The cellulose ester used in the composition has a degree of substitution of at least 1.8, preferably at least 2.0. The cellulose ester can have a molecular weight of not more than 90,000. The patent also mentions that the composition can be made with cellulose esters having a low degree of substitution, meaning they contain fewer fibrils than refined fibers.

Problems solved by technology

At the same time, heightened environmental awareness on the part of consumers and manufacturers, coupled with increasing energy costs, has shifted attention toward items formed from sustainable materials that are also environmentally non-persistent.
However, such synthetic fibers typically are persistent in the environment.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compostable wet-laid articles comprising cellulose and cellulose esters
  • Compostable wet-laid articles comprising cellulose and cellulose esters
  • Compostable wet-laid articles comprising cellulose and cellulose esters

Examples

Experimental program
Comparison scheme
Effect test

example 1

nage Analysis: Canadian Standard Freeness and Williams Slowness

[0716]In this example, the effect of CA staple fibers on the Canadian Standard Freeness (CSF) of the furnish composition is reported. The CSF is a measure of the drainage performance of a pulp slurry.

[0717]Lab 1 analyzes the Lab1 finished pulp slurry samples via Canadian Standard freeness test. Lab 2 analyzes the Lab 2 finished pulp slurry samples via Schopper-Riegler Freeness and converts the results to the Canadian Standard Freeness using a TAPPI table.

[0718]Differences between Lab 1 and Lab 2 controls are designed to impart different refining energies to the controls. Lab 1 uses a 5 lb. weight while Lab 2 uses a 12 lb. weight (5.5 kg)—both for 15 minutes in a Valley Beater. The additional refining energy at Lab 2 results in lower Canadian Standard Freeness results—particularly in the control samples and the co-refined samples. The results are reported in Table 10.

[0719]The CSF value of the control for Method 1, Lab 1 ...

example 2

Slowness

[0724]The Williams Slowness test method is described as follows:

[0725]This method describes a procedure for determining the time (sec.) required for 1000 ml of 0.3% consistency pulp slurry to pass through a known square area of a screen. This method is generally applicable to any wet laid furnish useful in the making of a paper sheet. The Williams Slowness Drainage apparatus, shown in FIG. 39, permits water flow from one side of a Williams Drainage Screen through to the opposite side. The specimen holder is a metal square 10.16 cm×10.16 cm (4 in.×4 in.) which encloses a wire mesh circle 8.26 cm (3.25 in.) in diameter clamped to a flat base plate of the same or bigger size. The area of paper specimen exposed to water flow is 53.56 cm2 or (8.29 in2). The metal parts should preferably be a brass or other corrosion-resistant material.

[0726]A 2 15 / 16 in. diameter cork with a cord attached to top is provided to lower and remove from the apparatus cylinder. The timer measures secon...

example 3

[0733]Thickness is measured in both Lab 1 and Lab 2 by averaging 4 thickness measurements at least 1 inch in from the edge near the midpoint of each side of the handsheet. The thickness of the handsheets is set forth in Tables 13-14.

TABLE 13Thickness (mm)Method 1, Lab 1Method 2, Lab 14%16%4%16%4%16%4%16%Variant0%CRCRPAPA0%CRCRPAPAControl0.1560.125CA10.1700.2100.1800.2310.1310.1570.1380.179CA20.1670.1940.1690.2080.1340.1500.1480.154CA30.1700.2040.1740.2530.1290.1470.1360.185CA40.1740.2090.1860.2520.1340.1570.1520.184CA50.1640.1890.1670.2170.1320.1490.1410.168

TABLE 14Thickness (mm)Method 1, Lab 2Method 2, Lab 24%16%4%16%4%16%4%16%Variant0%CRCRPAPA0%CRCRPAPAControl0.1750.133CA10.1890.2290.1960.250.1390.1690.1510.192CA20.1790.2110.1870.2270.1430.1640.1490.177CA30.1890.2240.1910.2590.1440.1600.1450.199CA40.1940.2270.1950.2620.1450.1710.1610.196CA50.1750.19940.1790.22960.1340.1550.1510.175

[0734]As can be seen from Tables 13-14 and from FIGS. 10-11, with the addition of Adding CE staple fi...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
cut lengthaaaaaaaaaa
sizeaaaaaaaaaa
weight percentaaaaaaaaaa
Login to View More

Abstract

Wet laid products including packaging is obtained from co-refined cellulose fibers and synthetic fibers are made biodegradable, and can also be compostable and soil biodegradable. The synthetic fibers include staple cellulose ester fibers. Desirably, such staple cellulose ester fibers have a denier per filament of 3 or less, a cut length of 6 mm or less, are crimped, or are non-round and crimped, and have a degree of substitution of 2.5 or less.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application Ser. No. 62 / 721,869 filed Aug. 23, 2018, which is incorporated herein by reference in its entirety.FIELD OF THE INVENTION[0002]The present invention relates Compositions, and wet laid articles made from the Compositions, containing cellulose fibers and cellulose ester fibers, as well as wet laid processes using the Compositions.BACKGROUND[0003]Recently, the increasing popularity of convenience food, such as fast food, casual dining, and pre-made meals, has increased the need for single-use containers and packaging. At the same time, heightened environmental awareness on the part of consumers and manufacturers, coupled with increasing energy costs, has shifted attention toward items formed from sustainable materials that are also environmentally non-persistent. Many products, including wet laid products, contain blended synthetic fibers such as polyeste...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): D21H15/10B65D65/46D21H15/04D21H11/14D21H11/20D21H27/10D21H27/00
CPCD21H27/005D21H11/14B65D65/466D21H11/20D21H15/10D21H15/04D21H27/10D21H13/06D21H11/12D21H27/002D21H27/08Y02W90/10G06Q30/018
Inventor PARKER, KENNY RANDOLPHEVERETT, CHARLES STUARTMITCHELL, MELVIN GLENNGHOSH, KOUSHIKIZALLALEN, MOUNIR
Owner EASTMAN CHEM CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products