Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Heliostat Correction System Based on Celestial Body Images and Its Method

a technology of celestial body and correction system, applied in the field of heliostat correction, can solve the problems of affecting power generation efficiency, affecting the efficiency of power generation, and the number of heliostats that can be corrected at the same time, and the method with low efficiency usually takes a long time to make the heliostat. , to achieve the effect of ensuring the efficiency of heliostat correction, reducing the possibility of error, and low difficulty

Active Publication Date: 2019-05-30
SHANGHAI PARASOL RENEWABLE ENERGY CO LTD
View PDF0 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention is a heliostat correction system that takes advantage of regularly moving and bright celestial bodies as markers to improve correction efficiency. The system aligns the surface normal of the heliostat with the center of the marker and calculates the deviation of the mechanical motion of the heliostat to correct it simultaneously and independently. The correction system is modularized and easy to install and replace in case of failure, with low maintenance cost. The communication module can send updated control commands to the heliostat without sending data back to the upper computer for processing, reducing the possibility of error. Overall, the heliostat correction system ensures the efficiency of heliostat correction and reduces the impact on power generation efficiency.

Problems solved by technology

Although sufficient mechanical motion accuracy of the heliostat has been ensured in design, various new errors will be introduced in the process of processing, manufacturing, transportation and installation as well as daily operation, such as tilt of the rotation axis of the heliostat, foundation deformation, installation attitude deviation, deformation of the supporting structure, etc., making the newly installed heliostat unable to meet the design requirements and its reflected spot position will shift, thus directly affecting the power generation efficiency.
Although the above three methods are all traditional methods of heliostat correction, the number of heliostats that can be corrected at the same time is limited because the light spot carriers (white boards, photosensitive arrays, image acquisition devices, etc.) they use are installed on the tower.
Obviously, the traditional correction methods with low efficiency usually take a long time to make the heliostats in the whole solar thermal power station reach the optimal working state, which can no longer meet the operational requirements of modern solar thermal power stations.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Heliostat Correction System Based on Celestial Body Images and Its Method
  • Heliostat Correction System Based on Celestial Body Images and Its Method
  • Heliostat Correction System Based on Celestial Body Images and Its Method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0048]The present invention will now be described in detail with reference to the accompanying drawings and embodiments.

[0049]As shown in FIGS. 1 to 7, a heliostat correction system based on celestial body images comprising a heliostat 1 which is fixed on the rotation axis; the reflecting surface of the heliostat 1 is provided with a heliostat correction system 2; in the present invention, the heliostat correction system 2 comprises an image acquisition module 4, a data analysis module 5, a correction calculation module 6, a data storage module 7 and a communication module 8, and is used for the daily correction of the heliostat 1 in the solar thermal power station. The image acquisition module 4 comprises a light intensity adjusting device (a neutral attenuation sheet or other device capable of adjusting the incident light intensity of a celestial body), an imaging light path (a lens or a pinhole) and a digital image sensor; the image acquisition module 4 is in the same direction a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A heliostat correction system includes an image acquisition module for acquiring the image of a celestial body in a field of view and sending the image to a data analysis module which analyzes the deviation value between the celestial body image and the image center in an image coordinate system and transmits the deviation value to a correction calculation module which decomposes the deviation to a corresponding rotation axis according to the rotation mode of a heliostat to obtain the deviation angle of each rotation axis; a data storage module is used to store the correction result of the heliostat and the single correction period control command list of the heliostat; a communication module reads the single correction period control command list from the data storage module, sends the list to the heliostat, and simultaneously controls the image acquisition module to shoot according to the rotation period of the heliostat.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]The present application is a Continuation-In-Part application of PCT Application No. PCT / CN2018 / 081854 filed on Apr. 4, 2018, which claims the benefit of Chinese Patent Application No. 201711209150.3 filed on Nov. 27, 2017. All the above are hereby incorporated by reference.FIELD OF THE INVENTION[0002]The present invention relates to a heliostat correction system based on celestial body images and its method, and belongs to the technical field of heliostat correction.BACKGROUND OF THE INVENTION[0003]In a solar thermal power station, a certain number of heliostats are used to reflect the sunlight in an area into a heat absorber area, and the energy required for power generation is obtained by concentrating the sunlight. However, the position of the sun changes continuously with time, so the heliostats need to move continuously to correct the exit direction of the reflected light, so that the light spot can accurately fall in the area of th...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): F24S50/20F24S20/20G05B23/02G05D3/12G06K9/20G06V10/147
CPCF24S50/20F24S20/20G05B23/02G05D3/12G06K9/209G06T7/30G06T7/70G05B13/042G05D3/105Y02E10/47F24S80/00F24S23/70G06V10/245G06V10/147G05B19/402
Inventor SUN, NANSHEN, PINGYOU, SILIANGCHEN, YUDA
Owner SHANGHAI PARASOL RENEWABLE ENERGY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products