Pixel structure and display panel

Active Publication Date: 2016-10-06
AU OPTRONICS CORP
View PDF2 Cites 11 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The patent describes a new pixel structure for liquid crystal displays that improves stability and reduces dark-state light leakage. This is achieved by using a pixel electrode with multiple branch electrodes and a passivation layer with multiple branch protrusion patterns that create a desirable undulated structure. This prevents unstable tilting of the liquid crystal and reduces dark-state light leakage, resulting in a better display.

Problems solved by technology

However, when the branch electrodes and the slits are only included d in the pixel electrode, the liquid crystal molecules near the slits are slightly twisted or are not tilted in a stable manner; thereby, the efficiency of the liquid crystal molecules in the LCD is deteriorated, and the transmittance is reduced as well.
The unstably tilted liquid crystal molecules may further result in dark-state light leakage.
Furthermore, in the pixel electrode only consisting of the branch electrodes, the pixel electrode dose not have any other patterns or type designs.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Pixel structure and display panel
  • Pixel structure and display panel
  • Pixel structure and display panel

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0069]FIG. 3 is a schematic top view illustrating a pixel electrode in a pixel structure according to the disclosure. FIG. 4 is a schematic top view illustrating a passivation layer below the pixel electrode depicted in FIG. 3. FIG. 5 is a schematic view illustrating that the pixel electrode depicted in FIG. 3 and the passivation layer depicted in FIG. 4 are overlapped. With reference to FIG. 3, the pixel electrode 120 has at least one block-shaped electrode (i.e., at least one plate electrode) 122 and a plurality of first branch electrodes 124. Particularly, the block-shaped electrode 122 is an electrode region in the pixel electrode 120 and is not patterned; that is, the block-shaped electrode 122 does not have any opening, hole, slit, groove, and gap. By contrast, the first branch electrodes 124 are electrode regions in the pixel electrode 120 and are patterned. The pixel electrode 120 may further include a main electrode (i.e., a main-truck electrode) 126. The first branch elect...

second embodiment

[0077]FIG. 9 is a schematic top view illustrating a pixel electrode in a pixel structure according to the disclosure. FIG. 10 is a schematic top view illustrating a passivation layer below the pixel electrode depicted in FIG. 9. FIG. 11 is a schematic view illustrating that the pixel electrode depicted in FIG. 9 and the passivation layer depicted in FIG. 10 are overlapped. As shown in FIG. 9, the pixel electrode 220 has at least one block-shaped electrode (i.e., at least one plate electrode) 222, a plurality of first branch electrodes 224, a main electrode (i.e., a main-truck electrode) 226, and a plurality of outer branch electrodes 228. Particularly, the block-shaped electrode 222 is an electrode region in the pixel electrode 220 and is not patterned; that is, the block-shaped electrode 222 does not have any opening, hole, slit, groove, and gap. By contrast, the first branch electrodes 224, the main electrode 226, and the outer branch electrodes 228 are electrode regions in the pi...

third embodiment

[0083]FIG. 13 is a schematic top view illustrating a pixel electrode in a pixel structure according to the disclosure. FIG. 14 is a schematic top view illustrating a passivation layer below the pixel electrode depicted in FIG. 13. FIG. 15 is a schematic view illustrating that the pixel electrode depicted in FIG. 13 and the passivation layer depicted in FIG. 14 are overlapped. As shown in FIG. 13, the pixel electrode 320 has at least one block-shaped electrode (i.e., at least one plate electrode) 322, a plurality of first branch electrodes 324, a first main electrode (i.e., a first main-truck electrode) 326, and a second main electrode (i.e., a second main-truck electrode) 328. Particularly, the block-shaped electrode 322 is an electrode region in the pixel electrode 320 and is not patterned; that is, the block-shaped electrode 322 does not have any opening, hole, slit, groove, and gap. By contrast, the first branch electrodes 324 are electrode regions in the pixel electrode 320 and ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A pixel structure includes a substrate, an opposite substrate, a scan line and a data line, an active device, a pixel electrode, and a passivation layer. The pixel electrode has at least one block-shaped electrode and a plurality of first branch electrodes. The passivation layer has at least one block-shaped protrusion pattern, a plurality of branch protrusion patterns, and a plurality of grooves. The first branch electrodes are located on the block-shaped protrusion patterns. An Edge of the block-shaped electrodes further extends to the block-shaped protrusion patterns. An orthogonal projection gap W1 is between an orthogonal projection edge of the block-shaped electrode and an orthogonal projection edge of the nearest first branch electrode, and 0 μm<W1≦5 μm. An orthogonal projection distance W2 is between the orthogonal projection edge of the block-shaped electrode and an orthogonal projection edge of the block-shaped protrusion pattern, and 0 μm<W2≦10 μm.

Description

CROSS-REFERENCE TO RELATED APPLICATION[0001]This application claims the priority benefit of Taiwan application serial no. 104110293, filed on Mar. 30, 2015. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.FIELD OF THE DISCLOSURE[0002]An exemplary embodiment of the disclosure is directed to a pixel structure and a display panel.DESCRIPTION OF RELATED ART[0003]Among flat panel displays, liquid crystal displays (LCDs) have been extensively employed. In the LCD, pixel electrodes and a common electrode are formed on one or two substrates, and a liquid crystal layer is interposed between the two substrates. By applying a voltage to the LCD, an electric field is generated on the liquid crystal layer; the arrangement of liquid crystal molecules in the liquid crystal layer may be decided according to the electric field, and patterns can thereby be displayed.[0004]Among a variety of LCDs, a vertically alig...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G02F1/1343G02F1/1368H01L27/12G02F1/1362
CPCG02F1/134309H01L27/124G02F1/1368G02F1/136286G02F1/133707
Inventor YEH, CHAO-WEIKU, CHENG-PIMTING, TIEN-LUNHSU, WEN-HAO
Owner AU OPTRONICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products