Loc device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification

Inactive Publication Date: 2011-12-22
GENEASYS
View PDF2 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0094]The easily usable, mass-producible, and inexpensive genomic analysis LOC device accepts a biological sample through its sample receptacle, uses its dialysis section to separate the leukocytes contained in the sample, lyses the leukocytes in its chemical lysis chamber to release the leukocytes' genetic material, preprocesses the sample's genetic material in its incubation section, amplifies target genetic sequences, and analyzes the sample's nucleic acid sequences via hybridization with oligonucleotide probes with sensing via its integral imaging array, utilizing reagents stored in the LOC device's reagent reservoirs.
[0310]The reagent reservoirs, being integral to the LOC device and holding the assay's total reagent requirements, provide for the low system component-count and simple manufacturing procedures, leading into an inexpensive assay system.

Problems solved by technology

Insufficient stringency can result in a high degree of nonspecific binding.
Excessive stringency can lead to a failure of appropriate binding, which results in diminished sensitivity.
Despite the advantages that molecular diagnostic tests offer, the growth of this type of testing in the clinical laboratory has been slower than expected and remains a minor part of the practice of laboratory medicine.
This is primarily due to the complexity and costs associated with nucleic acid testing compared with tests based on methods not involving nucleic acids.
However, controlling fluid flow through the LOC device, adding reagents, controlling reaction conditions and so on necessitate bulky external plumbing and electronics.
Connecting a LOC device to these external devices effectively restricts the use of LOC devices for molecular diagnostics to the laboratory setting.
The cost of the external equipment and complexity of its operation precludes LOC-based molecular diagnostics as a practical option for point-of-care settings.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Loc device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
  • Loc device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
  • Loc device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

Overview

[0454]This overview identifies the main components of a molecular diagnostic system that incorporates embodiments of the present invention. Comprehensive details of the system architecture and operation are set out later in the specification.

[0455]Referring to FIGS. 1, 2, 3, 139 and 140, the system has the following top level components:

[0456]Test modules 10 and 11 are the size of a typical USB memory key and very cheap to produce. Test modules 10 and 11 each contain a microfluidic device, typically in the form of a lab-on-a-chip (LOC) device 30 preloaded with reagents and typically more than 1000 probes for the molecular diagnostic assay (see FIGS. 1 and 139). Test module 10 schematically shown in FIG. 1 uses a fluorescence-based detection technique to identify target molecules, while test module 11 in FIG. 139 uses an electrochemiluminescence-based detection technique. The LOC device 30 has an integrated photosensor 44 for fluorescence or electrochemiluminescence detection...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Areaaaaaaaaaaa
Timeaaaaaaaaaa
Timeaaaaaaaaaa
Login to view more

Abstract

A lab-on-a-chip (LOC) device for genetic analysis of a biological sample, the LOC device having an inlet for receiving the sample, a supporting substrate, a dialysis section for separating cells larger than a predetermined threshold in the sample from smaller constituents, whereby the cells larger than a predetermined threshold include target cells containing genetic material for analysis, a plurality of reagent reservoirs, a lysis section downstream of the dialysis section for lysing the target cells to release the genetic material therein, the lysis section being in fluid communication with one of the reagent reservoirs containing a lysis reagent for lysing the target cells in the lysis section, a first nucleic acid amplification section downstream of the lysis section for amplifying first nucleic acid sequences in the genetic material, and, a second nucleic acid amplification section downstream of the first nucleic acid amplification section for amplifying second nucleic acid sequences in the amplicon from the first nucleic acid amplification section, wherein, the dialysis section, the lysis section, the first nucleic acid amplification section and the second nucleic acid amplification section are all supported on the supporting substrate.

Description

CO-PENDING APPLICATIONS[0001]The following applications have been filed by the Applicant which relate to the present application:GBS001USGBS002USGBS003USGBS005USGBS006USGSR001USGSR002USGAS001USGAS002USGAS003USGAS004USGAS006USGAS007USGAS008USGAS009USGAS010USGAS012USGAS013USGAS014USGAS015USGAS016USGAS017USGAS018USGAS019USGAS020USGAS021USGAS022USGAS023USGAS024USGAS025USGAS026USGAS027USGAS028USGAS030USGAS031USGAS032USGAS033USGAS034USGAS035USGAS036USGAS037USGAS038USGAS039USGAS040USGAS041USGAS042USGAS043USGAS044USGAS045USGAS046USGAS047USGAS048USGAS049USGAS050USGAS054USGAS055USGAS056USGAS057USGAS058USGAS059USGAS060USGAS061USGAS062USGAS063USGAS065USGAS066USGAS067USGAS068USGAS069USGAS070USGAS080USGAS081USGAS082USGAS083USGAS084USGAS085USGAS086USGAS087USGAS088USGAS089USGAS090USGAS091USGAS092USGAS093USGAS094USGAS095USGAS096USGAS097USGAS098USGAS099USGAS100USGAS101USGAS102USGAS103USGAS104USGAS105USGAS106USGAS108USGAS109USGAS110USGAS111USGAS112USGAS113USGAS114USGAS115USGAS117USGAS118USGAS119USGAS1...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C40B60/12
CPCB01L3/5027Y10T436/25B01L3/502738B01L7/52B01L2200/10B01L2300/023B01L2300/024B01L2300/0636B01L2300/0654B01L2300/0883B01L2300/10B01L2300/1827B01L2400/0406B01L2400/0633B01L2400/0677B01L2400/0688F16K99/003F16K99/0036G01N27/223C12Q1/68Y10T436/107497Y10T436/173845Y10T436/143333Y10T436/11Y10T436/145555Y10T436/203332Y10T436/25375B01L3/502707Y10T137/0352Y10T137/0391Y10T137/1044Y10T137/206Y10T137/2076Y10T137/2202Y02A90/10
Inventor FACER, GEOFFREY RICHARDMOINI, ALIREZASILVERBROOK, KIAAZIMI, MEHDI
Owner GENEASYS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products