Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Biomarker detection process and assay of neurological condition

a biomarker and assay technology, applied in biomass after-treatment, chemical/physical/physicochemical processes, instruments, etc., can solve the problems of limited value of clinical response testing of incapacitated individuals, high cost of spectroscopic imaging and long diagnostic time, and the prospect of brain damag

Inactive Publication Date: 2011-06-16
BANYAN BIOMARKERS INC
View PDF30 Cites 28 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Traumatic, ischemic, and neurotoxic chemical insult, along with generic disorders, all present the prospect of brain damage.
While the diagnosis of severe forms of each of these causes of brain damage is straightforward through clinical response testing, computed tomography (CT), and magnetic resonance imaging (MRI), the imaging diagnostics are limited by both the high cost of spectroscopic imaging and long diagnostic time.
The clinical response testing of incapacitated individuals is of limited value and often precludes a nuanced diagnosis.
Additionally, owing to the limitations of existing diagnostics, situations arise wherein a subject experiences a stress to their neurological condition but are often unaware that damage has occurred or fail seek treatment as the subtle symptoms often quickly resolve.
The lack of treatment of these mild to moderate challenges to neurologic condition of a subject can have a cumulative effect or otherwise result in a severe brain damage event, either of which have a poor clinical prognosis.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Biomarker detection process and assay of neurological condition
  • Biomarker detection process and assay of neurological condition
  • Biomarker detection process and assay of neurological condition

Examples

Experimental program
Comparison scheme
Effect test

example 1

Materials for Biomarker Analyses

[0079]Illustrative reagents used in performing the subject invention include Sodium bicarbonate (Sigma Cat #: C-3041), blocking buffer (Startingblock T20-TBS) (Pierce Cat#: 37543), Tris buffered saline with Tween 20 (TBST; Sigma Cat #: T-9039). Phosphate buffered saline (PBS; Sigma Cat #: P-3813); Tween 20 (Sigma Cat #: P5927); Ultra TMB ELISA (Pierce Cat #: 34028); and Nunc maxisorp ELISA plates (Fisher). Monoclonal and polyclonal GFAP and UCH-L1 antibodies are made in-house or are obtained from Santa Cruz Biotechnology, Santa Cruz, Calif. Antibodies directed to α-II spectrin and breakdown products as well as to MAP2 are available from Santa Cruz Biotechnology, Santa Cruz, Calif. Labels for antibodies of numerous subtypes are available from Invitrogen, Corp., Carlsbad, Calif. Protein concentrations in biological samples are determined using bicinchoninic acid microprotein assays (Pierce Inc., Rockford, Ill., USA) with albumin standards. All other nec...

example 2

Biomarker Assay Development

[0080]Anti-biomarker specific rabbit polyclonal antibody and monoclonal antibodies are produced in the laboratory. To determine reactivity specificity of the antibodies to detect a target biomarker a known quantity of isolated or partially isolated biomarker is analyzed or a tissue panel is probed by western blot. An indirect ELISA is used with the recombinant biomarker protein attached to the ELISA plate to determine optimal concentration of the antibodies used in the assay. Microplate wells are coated with rabbit polyclonal anti-human biomarker antibody. After determining the concentration of rabbit anti-human biomarker antibody for a maximum signal, the lower detection limit of the indirect ELISA for each antibody is determined. An appropriate diluted sample is incubated with a rabbit polyclonal antihuman biomarker antibody for 2 hours and then washed. Biotin labeled monoclonal anti-human biomarker antibody is then added and incubated with captured biom...

example 3

In Vivo Model of TBI Injury Model

[0081]A controlled cortical impact (CCI) device is used to model TBI on rats as previously described (Pike et al, 1998). Adult male (280-300 g) Sprague-Dawley rats (Harlan: Indianapolis, Ind.) are anesthetized with 4% isoflurane in a carrier gas of 1:1 O2 / N2O (4 min.) and maintained in 2.5% isoflurane in the same carrier gas. Core body temperature is monitored continuously by a rectal thermistor probe and maintained at 37±1° C. by placing an adjustable temperature controlled heating pad beneath the rats. Animals are mounted in a stereotactic frame in a prone position and secured by ear and incisor bars. Following a midline cranial incision and reflection of the soft tissues, a unilateral (ipsilateral to site of impact) craniotomy (7 mm diameter) is performed adjacent to the central suture, midway between bregma and lambda. The dura mater is kept intact over the cortex. Brain trauma is produced by impacting the right (ipsilateral) cortex with a 5 mm d...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
timeaaaaaaaaaa
molecular massaaaaaaaaaa
molecular massaaaaaaaaaa
Login to View More

Abstract

The subject invention provides a robust, quantitative, and reproducible process and assay for diagnosis of a neurological condition in a subject. The invention provides measurement of two or more biomarkers in a biological fluid such as CSF or serum resulting in a synergistic mechanism for determining the extent of neurological damage in a subject with an abnormal neurological condition and for discerning subtypes thereof or tissue types subjected to damage.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application claims priority to U.S. Provisional Application No. 61 / 188,554 filed Aug. 11, 2008; U.S. Provisional Application No. 61 / 097,622 filed Sep. 17, 2008; U.S. Provisional Application No. 61 / 218,727 filed Jun. 19, 2009; and U.S. Provisional Application No. 61 / 271,135 filed Jul. 18, 2009. The contents of each provisional application is incorporated herein by reference as if each were explicitly and fully expressed herein.GOVERNMENTAL SUPPORT[0002]Portions of this work were supported by grants N14-06-1-1029, W81XWH-8-1-0376 and W81XWH-07-01-0701 from the United States Department of Defense.FIELD OF THE INVENTION[0003]The present invention in general relates to determination of neurological condition of an individual and in particular to measuring the quantity of a neuroprotective biomarker such as glial fibrillary acidic protein (GFAP) in concert with another biomarker of neurological condition.BACKGROUND OF THE INVENTION[0004]Th...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): G01N33/53G01N33/573C12M1/34B01J19/00
CPCG01N33/6896G01N2800/60G01N2800/2871G01N2800/28A61B5/4064G01N33/577G01N2800/56G01N2800/52
Inventor WANG, KEVIN KA-WANGHAYES, RONALD L.MUELLER, UWE R.ZHANG, ZHIQUN
Owner BANYAN BIOMARKERS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products