Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Phenolic foam

a technology of phenolic foam and cell walls, applied in the field of phenolic foam, can solve the problems of metals being susceptible to corrosion, reducing the flexibility of the cell walls of phenolic foam with time, and degrading thermal insulation performan

Inactive Publication Date: 2011-05-26
KINGSPAN HLDG (IRL) LTD
View PDF8 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0001]Phenolic foam is used in insulation applications for construction materials because of its superior thermal insulation and fire resistance characteristics.
[0002]It is known that the thermal conductivity of polymeric thermal insulation materials including phenolic foam can change with time. This phenomenon is caused by the gradual diffusion out of gas from inside the foam cells. The gas present inside the foam cells is the blowing agent used in the foaming process. The gas in the foam cells is slowly replaced by air from the atmosphere. As a result, the thermal conductivity of phenolic foam can increase with time.
[0003]It is highly desirable to achieve long-term stability for the thermal insulation performance of phenolic foam products. It is believed that one of the causes for the degradation of thermal insulation performance is the reduction in the flexibility of the cell walls of phenolic foam with time. Therefore, an object of the present invention is to impart flexibility to the cell walls and thereby maintain closed cell structure in the phenolic foam. Stable closed cell structure provides a means for maintaining stable thermal conductivity for the phenolic foam over an extended time period.
[0005]Under the above-stated circumstances, the object of the present invention is to provide phenolic foam that has excellent thermal insulation performance, yet also have a higher pH value when compared to conventional phenolic foam. Such a phenolic foam when in contact with metal would have significantly reduced potential to induce metallic corrosion.

Problems solved by technology

It is believed that one of the causes for the degradation of thermal insulation performance is the reduction in the flexibility of the cell walls of phenolic foam with time.
This could cause a problem when metallic materials are in contact with the phenolic foam, as metals could be susceptible to corrosion.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Phenolic foam
  • Phenolic foam
  • Phenolic foam

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0098]To 244 g of Resin A, at 11-15° C., is mixed with 12.2 g of powdered urea and 6.1 g of a plasticiser as described previously herein. The resin is allowed to stand for between 2 and 24 hours. Then, 12.2 g of calcium carbonate powder (Durcal 130 supplied by Omya) of average particle size 170 μm is added and mixed into the resin until it is uniformly dispersed. Next, 21.0 g of pre-blended isopropyl chloride / iso-pentane (85 / 15 parts by weight) as blowing agent at 1° C. is mixed into the resin. Once a uniform emulsion has formed, the resin mixture is cooled to between 5° C. and 10° C. Next, 40 g of liquid para-toluene sulphonic acid / xylene sulphonic acid blend (65 / 35 parts by weight) at 92% concentration, at 8° C. is quickly mixed in. Foaming commences immediately. Mixing of the acid into resin takes less than 10 seconds and 200 g of the resin mix is quickly poured into a 30×30×5.0 cm picture frame mould preheated to 70-75° C.

[0099]A pressure of 40 to 50 kPa is applied to the lid of...

example 2

[0102]Here the ratio of isopropyl chloride to iso-pentane is adjusted to 70 / 30 parts per weight)

[0103]To 244 g of Resin A, at 11-15° C., is mixed with 12.2 g of powdered urea and 6.1 g of plasticizer as described previously herein. The resin is allowed to stand for between 2 and 24 hours. Then, 122 g of calcium carbonate powder (Durcal 130 supplied by Omya) is added and mixed into the resin until it is uniformly dispersed. Next, 21.0 g of pre-blended isopropyl chloride / iso-pentane (70 / 30 parts by weight) as blowing agent at 1° C. is mixed into the resin. Once a uniform emulsion has formed, the resin mixture is cooled to between 5° C. and 10° C. Next, 40 g of liquid para-toluene sulphonic acid / xylene sulphonic acid blend (65 / 35 parts by weight) at 92% concentration, at 8° C. is quickly mixed in. Foaming commences immediately. Mixing of the acid into resin takes less than 10 seconds and 200 g of the resin mix is quickly poured into a 30×30×5.0 cm picture frame mould preheated to 70-75...

example 3

[0106]Here there is a higher addition of plasticiser to the resin (12.2 g instead of 6.1 g).

[0107]To 244 g of Resin A, at 11-15° C., is mixed with 12.2 g of powdered urea and 12.2 g of plasticiser as described previously herein. The resin is allowed to stand for between 2 and 24 hours. Then, 12.2 g of calcium carbonate powder (Durcal 130 supplied by Omya) is added and mixed into the resin until it is uniformly dispersed. Next, 21.0 g of pre-blended isopropyl chloride / iso-pentane (85 / 15 parts by weight) as blowing agent at 1° C. is mixed into the resin. Once a uniform emulsion has formed, the resin mixture is Cooled to between 5° C. and 10° C. Next, 40 g of liquid para-toluene sulphonic acid / xylene sulphonic acid blend (65 / 35 parts by weight) at 92% concentration, at 8° C. is quickly mixed in. Foaming commences immediately. Mixing of the acid into resin takes less than 10 seconds and 200 g of the resin mix is quickly poured into a 30×30×5.0 cm picture frame mould preheated to 70-75° ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

A phenolic foam is made by foaming and curing a formable phenolic resin composition that comprises a phenolic resin, a blowing agent, an acid catalyst and an inorganic filler. The blowing agent comprises a blend of chlorinated aliphatic hydrocarbon containing 2 to 5 carbon atoms and an aliphatic hydrocarbon containing from 3 to 6 carbon atoms mixed in a ratio of 60 / 40 to 95 / 5 parts by weight. The inorganic filler is at least one selected from a metal hydroxide, a metal oxide, a metal carbonate and metal powder. The phenolic foam has a pH of 5 or more and a water uptake less than 1 kg / m2. A phenolic foam with a higher pH value compared with conventional phenolic foam reduces corrosion risk when in contact with metallic materials. The phenolic foam maintains excellent long-term stable thermal insulation performance, low water uptake and fire resistance performance and by using the said blowing agent, does not harm the environment as an ozone or global warming depleting material.

Description

[0001]Phenolic foam is used in insulation applications for construction materials because of its superior thermal insulation and fire resistance characteristics.[0002]It is known that the thermal conductivity of polymeric thermal insulation materials including phenolic foam can change with time. This phenomenon is caused by the gradual diffusion out of gas from inside the foam cells. The gas present inside the foam cells is the blowing agent used in the foaming process. The gas in the foam cells is slowly replaced by air from the atmosphere. As a result, the thermal conductivity of phenolic foam can increase with time.[0003]It is highly desirable to achieve long-term stability for the thermal insulation performance of phenolic foam products. It is believed that one of the causes for the degradation of thermal insulation performance is the reduction in the flexibility of the cell walls of phenolic foam with time. Therefore, an object of the present invention is to impart flexibility ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C08J9/06C08K3/26C08K5/12B32B5/18
CPCC08J9/0066C08J9/149C08J2203/14C08J2361/10C08J2361/06C08L71/08C08J9/145C08J2203/142Y10T442/647Y10T428/249953
Inventor COPPOCK, VINCENTZEGGELAAR, RUUDTAKAHASHI, HIROOKATO, TOSHIYUKI
Owner KINGSPAN HLDG (IRL) LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products