Thermoelectric material and method for producing same
a technology of thermoelectric materials and thermoelectric elements, which is applied in the direction of thermoelectric device junction materials, thermoelectric device manufacture/treatment, electrical apparatus, etc., can solve the problems of reducing the energy conversion efficiency of thermoelectric elements, increasing impurities, and decreasing relative density, so as to reduce the thermal conductivity of thermoelectric materials. , the effect of reducing the electrical resistivity
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
[0039] As a thermoelectric material, FeSi2 whose material is cheap and easy to be obtained was selected to verify effects of the present invention. A commercially available FeSi2 powder (particle size: 10 to 20 μm) was enclosed in an iron pot together with iron balls, and the atmosphere therein was an inactive gas atmosphere generated by Ar substitution. Then, by planetary ball milling, the powder was ground for 10 hours. After the grinding, it was confirmed through an SEM observation that the particle size of secondary particles of the FeSi2 powder was 0.5 to 2 μm. The size of crystallite was determined based on the integral breadth obtained from XRD measurement of the FeSi2 powder (Hall method), and it was found that the crystal size was 5 to 10 nm (average crystal particle size: 8 nm). In an Ar globe box, the FeSi2 powder was enclosed in a capsule made of Ni to fill the capsule and sintered under a pressure of 3 GPa at 700° C. for 30 minutes. From XRD measurement after the sinter...
example 2
[0042] A sintered body was produced through the same process as that of Example 1 except that the time for grinding by ball milling was five hours, and the average particle size of crystals constituting the sintered body and thermal conductivity were measured. The results are shown in Table 1 below. In Table 1, No. 4 shows the results of Example 2 and No. 5 shows the results of Example 1. The average crystal particle size after ball milling was 35 nm. From the results shown in Table 1, it is found that the thermal conductivity considerably lowers when the particle size of crystals of the sintered body structure is 0.05 μm or less.
example 3
[0044] From the sintered body of Example 1 (No. 5 in Table 1), a sample of 1 mm×1 mm×15 mm in size was cut, and the electrical resistivity was measured by the four-terminal method. Further, through an EDS analysis of a grain boundary portion of the sintered body, constituent elements were identified. In addition, under the same conditions as those of No. 5, two types of sintered bodies were produced by ball milling in air with no Ar substitution (No. 6) and by enclosing in atmosphere the powder in the Ni capsule before sintering (No. 7). For these sintered bodies, the electrical resistivity was measured and the EDS analysis was conducted in the manner as described above. The results are shown in Table 2.
[0045] From the results, it was found that impurities (oxide in this case) of grain boundaries have a great influence on the electrical resistivity, and the reduction of the impurities could make the electrical resistivity lower even the crystal structure was a fine crystal structur...
PUM
Property | Measurement | Unit |
---|---|---|
crystal particle size | aaaaa | aaaaa |
electrical resistivity | aaaaa | aaaaa |
pressure | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com