Filling parameter optimization method and device, and computer readable storage medium
A parameter and numerical technology, applied in the field of optimization of filling parameters, can solve the problems of multi-functionality of filling methods, the inability to realize various fillings, and the inability to be set, and achieves the effect of improving operation speed, reducing input scale, and reducing memory usage.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0096] Apply the above example of redundant phenomenon caused by the filling method of the prior art to an embodiment of the present disclosure to see whether there is redundant phenomenon.
[0097] Assume that in Example 1, each value of the height (H) dimension is equal to each value of the width (W) dimension, and the corresponding parameters in the input data are:
[0098] Step size (stride)=3, convolution kernel expansion parameter (dilation)=1, input size (input_size)=7, convolution kernel size (filter_size)=4, filling parameter (padding)=2,
[0099] The input data (input) is:
[0100] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[0101] Table 6
[0102] Then, the expanded size of the convolution kernel (dilation_filter_size)=dilation×(filter_size-1)+1=1×(4-1)+1=4
[0103] The expanded convolution kernel:
[0104] 1 1 1 1 ...
Embodiment 2
[0123] Assume that in Example 2, each value of the height (H) dimension is equal to each value of the width (W) dimension, and the corresponding parameters in the input data are:
[0124]Step size (stride) = 2, convolution kernel expansion parameter (dilation) = 1, input size (input_size) = 7, convolution kernel size (filter_size) = 4, filling parameter (padding) = 2,
[0125] The input data (input) is:
[0126] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[0127] Table 12
[0128] Then, the expanded size of the convolution kernel (dilation_filter_size)=dilation×(filter_size-1)+1=1×(4-1)+1=4
[0129] The expanded convolution kernel:
[0130] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[0131] Table 13
[0132] Filled input size (input_with_padding_size) = input_size+2×padding=7+2×2=11
[0133] Filled input data (in...
Embodiment 3
[0150] Assume that in embodiment 3, each value of the height (H) dimension is equal to each value of the width (W) dimension, and the corresponding parameters in the input data are:
[0151] Step size (stride) = 4, convolution kernel expansion parameter (dilation) = 1, input size (input_size) = 7, convolution kernel size (filter_size) = 4, filling parameter (padding) = 2,
[0152] The input data (input) is:
[0153] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[0154] Table 18
[0155] Then, the expanded size of the convolution kernel (dilation_filter_size)=dilation×(filter_size-1)+1=1×(4-1)+1=4
[0156] The expanded convolution kernel:
[0157] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[0158] Table 19
[0159] Filled input size (input_with_padding_size) = input_size+2×padding=7+2×2=11
[0160] Filled input data...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com