Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Image processing device and method, data processing device and method, program, and recording medium

An image processing device and image quality technology, which are applied in image data processing, image data processing, image communication and other directions, and can solve problems such as image quality deterioration.

Inactive Publication Date: 2012-07-11
FUJIFILM CORP
View PDF3 Cites 14 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Therefore, there is a problem that when an image that does not satisfy the condition is input, the quality of the image restored after projection deteriorates

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Image processing device and method, data processing device and method, program, and recording medium
  • Image processing device and method, data processing device and method, program, and recording medium
  • Image processing device and method, data processing device and method, program, and recording medium

Examples

Experimental program
Comparison scheme
Effect test

example 2

[0384] Although in Figure 6 and 12 11 illustrates a configuration in which the learning step and the restoring step are performed by one image processing device, but the image processing device performing the learning step and the image processing device performing the restoring step may be arranged separately. In this case, it is desired that the image processing apparatus that manages the restoration step can externally acquire the information of the individually created projection relationship (intrinsic projection matrix and projection tensor). A media interface or a communication interface corresponding to an optical disc or other removable storage media can be used as the information acquisition component.

example 3

[0386] Although LPP is illustrated in the embodiment as a projection using local relations, various learning methods such as Local Linear Embedding (LLE), Local Tangent Space Arrangement (LTSA), Isomap, Lapp Lass Feature Maps (LE) and Neighborhood Preserving Embeddings (NPE).

example 4

[0388] exist Figure 6 In the embodiment described in , the modality of the tile and the resolution of the four modalities described in Table 1 are treated as known elements for setting the conditions to simplify the description, and by focusing on the "pixel value ” and “individual differences” through the projective route of the pixel-intrinsic space and the individual-difference intrinsic space from the pixel-real space. However, the design of projected routes is not limited to performing this example in the present invention. Various eigenspaces can be selected as eigenspaces in the projected route that vary according to the modality.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An eigenprojection matrix (#14) is generated from a learning image group (#10), in which high-quality images and low-quality images are paired up, by a projection operation (#12) using a locality relationship, and a projection nuclear tensor (#16) that defines the correspondence relationship between the low-quality image and an intermediate eigenspace and the correspondence relationship between the high-quality image and the intermediate engenspace is created. A first sub nuclear tensor is created (#24) by first setting from the projection nuclear tensor, and a coefficient vector in the intermediate eigenspace is calculated by projecting (#30) an inputted low-quality image (#20) using the eigenprojection matrix and the first sub nuclear tensor. A high-quality image (#36) is obtained by projecting (#34) the coefficient vector using a second sub nuclear tensor (#26) created by second setting from the projection nuclear tensor, and the eigenprojection matrix. Consequently, highly accurate and highly robust image conversion that enables the relaxation of the input condition of an image that is a conversion source can be implemented, and also the reduction of the processing load, the increase of the processing speed, and the reduction of the required amount of memory can be achieved.

Description

technical field [0001] The present invention relates to an image processing device and method, a data processing device and method, a program, and a recording medium, and in particular, to an image data (low image quality information) suitable for restoring, interpolating, enlarging, and encoding that do not exist in image data (low image quality information) before processing. Image processing technology and data processing technology for high image quality information. Background technique [0002] A technique is proposed as a method to generate a high-resolution output image from a low-resolution input image, in which pairs of low-resolution and high-resolution images of multiple image contents are learned in advance, and the low-resolution information obtained from the A conversion (projection) relationship to high-resolution information, and using the projection relationship to generate (restore) an image including high-resolution information from a low-resolution input...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G06T1/00H04N1/387H04N7/01
CPCH04N19/00436H04N19/00781H04N19/004H04N19/00266H04N19/00248H04N19/0026G06T3/4053H04N19/00127H04N19/0009G06K9/6247H04N19/00545G06K9/00275H04N19/172H04N19/46H04N19/61H04N19/124H04N19/132H04N19/17H04N19/167H04N19/23H04N19/33G06V40/169G06V10/7715G06F18/2135
Inventor 龟山祐和
Owner FUJIFILM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products