Preparation method of selenium and barium activated lithium iron phosphate anode materials
A technology of lithium iron phosphate and cathode material, applied in battery electrodes, electrical components, circuits, etc., can solve the problems of low tap density and poor electrical conductivity, and achieve improved electrical conductivity, improved electronic conductivity, and reduced unit cell volume. Effect
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
Embodiment 1
[0025] Li2CO3 (99.73%), Se (99.99%), BaCO3 (99.8%), FeC2O4.2H2O (99.06%), NH4H2PO4 (98%) raw materials, according to 1mol Li: 0.00002mol Se: 0.0003mol Ba: 1mol Fe: 1mol P After proportional mixing, high-speed ball milling in absolute ethanol (AR) medium for 20h (rotation speed 200r / mimn. After drying at 105-120°C, the precursor was obtained, and the dried precursor was placed in a high-temperature furnace. In a pure nitrogen (>99.5%) atmosphere, calcining at a high temperature of 500-750° C. for 24 hours to obtain the selenium and barium activated lithium iron phosphate cathode material of the present invention.
Embodiment 2
[0027] Li2CO3 (99.73%), Se (99.99%), BaCO3 (99.8%), FeC2O4.2H2O (99.06%), NH4H2PO4 (98%) raw materials, according to the ratio of 1mol Li: 0.00004mol Se: 0.001mol Ba: 1mol Fe: 1molP After mixing, high-speed ball milling in absolute ethanol (AR) medium for 20h (rotation speed 200r / mimn. After drying at 105-120°C, the precursor was obtained, and the dried precursor was placed in a high-temperature furnace. In a nitrogen (>99.5%) atmosphere, calcining at a high temperature of 500-750° C. for 24 hours to obtain the selenium and barium activated lithium iron phosphate cathode material of the present invention.
Embodiment 3
[0029] Li2CO3 (99.73%), Se (99.99%), BaCO3 (99.8%), FeC2O4.2H2O (99.06%), NH4H2PO4 (98%) raw materials, according to 1mol Li: 0.00005mol Se: 0.003mol Ba: 1mol Fe: 1mol P After proportional mixing, high-speed ball milling in absolute ethanol (AR) medium for 20h (rotation speed 200r / mimn. After drying at 105-120°C, the precursor was obtained, and the dried precursor was placed in a high-temperature furnace. In a pure nitrogen (>99.5%) atmosphere, calcining at a high temperature of 500-750° C. for 24 hours to obtain the selenium and barium activated lithium iron phosphate cathode material of the present invention.
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com