Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Water circulation systems for ponds, lakes, and other bodies of water

a technology for ponds and lakes, applied in chemical/physical processes, energy-based wastewater treatment, machines/engines, etc., can solve the problems of high flow rate, ineffective waste processing, and strong and concentrated domestic and commercial wastes, and achieves less turbulence and high flow rate

Active Publication Date: 2007-10-23
IXOM OPERATIONS
View PDF13 Cites 30 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

"The present invention is a high flow circulation system for larger and deeper bodies of water. The system includes a flotation platform, dish, impeller, and draft tube. The impeller draws water from the depths of the pond and generates a desirable circulation pattern throughout the entire body of water. The system has a high flow rate without creating turbulent flow at the surface of the pond. The impeller includes half blades with a gap between them to reduce turbulence. The draft tube is designed to have a neutral or slightly positive buoyancy and can be adjusted to control the flow. The system can be used in small ponds with shallow depths. The invention also includes an electronic control system to create apatite from calcium and phosphate molecules present in the water. The system is designed to bring up and mix small volumes of water from the lower zone into the upper zone without affecting the biological and chemical actions of each zone. The invention can be adapted for use in different environments and situations."

Problems solved by technology

Power availability to run the pump or impeller of the circulation system and seasonal weather conditions (e.g., surface ice) present great design challenges for optimum performance.
Remote ponds or other bodies of water can be a particular challenge as the only available power source may be solar energy.
In circulation systems for smaller bodies of water such as municipal wastewater ponds for treating domestic and industrial wastes, the high flow circulation pattern throughout the entire body of water discussed above is not always effective to process the wastes and in some cases can be counterproductive.
One problem in such smaller ponds (e.g., 5 to 15 feet deep) is that the domestic and commercial wastes are usually much stronger and more concentrated.
Also, such municipal wastewater ponds rely on more complicated mechanisms including biological and chemical ones for treating and processing the waste.
Each zone is essential for the proper and overall treatment and processing of the various and different waste materials and each zone has its own biological and chemical needs that are often the opposite of the other and often detrimental to the other.
Consequently, any thorough and overall mixing of the entire pond as in the earlier high flow systems for larger bodies of water will normally destroy the two zones and the effectiveness of the wastewater treatment pond.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Water circulation systems for ponds, lakes, and other bodies of water
  • Water circulation systems for ponds, lakes, and other bodies of water
  • Water circulation systems for ponds, lakes, and other bodies of water

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0042]As schematically shown in FIG. 1, the water circulation system 1 of a first set of embodiments of the present invention includes an upper flotation platform 3 with a draft hose or tube 5 depending downwardly from it to the water inlet 7. The inlet 7 is preferably positioned adjacent and slightly raised from the bottom 2 of the pond or other body of water 4. The flotation platform 3 as best seen in FIGS. 2 and 3 includes three floats 9 supported on the tubular frame 11 of the platform. The floats 9 extend outwardly of the central axis 13 and are preferably evenly spaced about the axis 13 (see FIG. 3). The floats 9 extend far enough out from the central axis 13 to provide a relative stable and buoyant support structure for the system 1 including its solar panels 15, electric motor 17, dish 19 (see also FIGS. 4 and 5), impeller 21 (see also FIGS. 4 and 6), draft hose 5, and the water inlet 7 of FIG. 1. As explained in more detail below, the draft hose 5 is also specially designed...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
diameteraaaaaaaaaa
diameteraaaaaaaaaa
diameteraaaaaaaaaa
Login to View More

Abstract

Circulation systems for ponds, lakes, or other bodies of water. In one set of embodiments, water is drawn up from the depths of the body for exposure to the atmosphere and to generate an overall, high flow circulation pattern throughout the entire body. In other embodiments, the circulation in the body of water is primarily limited to an upper aerobic zone with only small and controlled volumes from a lower anaerobic zone being brought up. Each system preferably includes a flotation platform, dish, impeller, and draft tube with specific modifications to the various systems to adapt them for use in a variety of environments.

Description

RELATED APPLICATIONS[0001]This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60 / 437,217 filed Dec. 31, 2002, which is incorporated herein by reference.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]This invention relates to the field of circulation systems for ponds, lakes and other bodies of water and more particularly to the field of such circulation systems for relatively large and deep bodies of water that require fairly high flow rates to be most effective and systems for smaller bodies such as municipal wastewater ponds that are designed primarily for treating domestic and industrial wastes and have special requirements to be effective.[0004]2. Discussion of the Background[0005]In regard to larger and deeper bodies of water that require high flow rates to be most effective, the fundamental goal of such systems is to create a nearly laminar surface flow out to the edges of the pond while uplifting water from the bottom depths of...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): C02F7/00B01F3/04B01F13/00C02F3/16
CPCB01F3/04609B01F13/0049C02F3/165C02F7/00C02F3/16C02F1/36C02F1/463C02F1/48C02F2209/40C02F2101/105C02F2201/009C02F2209/22B01F23/23341B01F33/503Y02W10/37Y02W10/10C02F1/74Y02A20/212
Inventor TORMASCHY, WILLARD R.KUDRNA, GARY A.OBRITSCH, TAIT J.BLETH, JOEL J.
Owner IXOM OPERATIONS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products