Synthesis for organometallic cyclometallated transition metal complexes
a transition metal complex and organometallic cyclometallate technology, applied in the field of organometallic synthesis, can solve the problems of unstable and difficult handling of lithiated organic materials, low yield, solvent and the related 2-methoxy-ethanol are not desirable for practical use, etc., to achieve the effect of controlling the yield of desired isomers and improving the yield
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 1
Preparation of fac-tris(2-phenylpyridinato-N,C2′)iridium(III)
K3IrBr6 (7.75 g, 9.82 mmol) was placed in a 200 mL flask with 75 mL 2-ethoxyethanol, 25 mL water, and 2-phenylpyridine (4.2 mL). The mixture was freeze-thaw degassed, and then refluxed for 4 hrs under nitrogen atmosphere during which time a yellow-orange precipitate appeared. After cooling, the precipitate was filtered, washed with 1 N HBr(aq), then water, and dried. Yellow tetrakis(2-phenylpyridine-N,C2′)(μ-dibromo)diiridium(III) (5.018 g) was collected (88% yield based on iridium). This intermediate material was used without further purification in the subsequent step.
Tetrakis(2-phenylpyridine-N,C2′)(μ-dibromo)diiridium(III) (0.960 g) and silver trifluoroacetate (0.54 g) were placed in a 100 mL flask. 1,2-Propanediol (35 mL) and 2-phenylpyridine (0.75 mL) were added and the mixture was freeze-thaw degassed and then refluxed under nitrogen for 5 hours. After cooling, the mixture was poured in air into 150 mL 1 molar HBr(a...
example 2-7
Additional Preparations of fac-tris(2-phenylpyridinato-N,C2′) iridium(III)
Examples 2 thru 7 were carried out in a similar manner to Example 1 except the solvent was changed as listed in Table 1. An additional difference for Examples 3 and 5 was that iridium(III) chloride hydrate was used as the starting material, and hence the intermediate formed in an analogous manner was tetrakis(2-phenylpyridine-N,C2)(μ-dichloro)diiridium(III). The results shown in Table 1 show that the process with solvents of the invention provide higher yield and better isomeric purity than comparison examples using other solvents, including those commonly found in the prior art of cyclometallation reactions. Example 2 compared to Example 3 further shows that while iridium chloride complexes may be used in the invention as starting materials, better yields may be obtained with the bromide complexes as starting materials.
TABLE 1MerExampleYieldIsomerExampleTypeHalideSolvent(%)(%)1InventionBr1,2-Propanediol91Trac...
example 8
Additional Preparation of fac-tris(2-phenylpyridinato-N,C2′) iridium(III)
This example was also carried out in a similar fashion to example 1, except the solvent was 1,3-propanediol. The yellow precipitate collected was dissolved in dichloromethane and filtered to remove insoluble silver and / or silver salts, and then precipitated by evaporating the solvent. The yield was 92% of tris(2-phenylpyridinato-N,C2′)iridium(III), of which the majority was the facial isomer and only 1.2% was identified as the meridional isomer.
PUM
Property | Measurement | Unit |
---|---|---|
boiling point | aaaaa | aaaaa |
phosphorescent | aaaaa | aaaaa |
temperatures | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com