Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Sealing agent for genitals

a technology for sealing agents and genitals, which is applied in the direction of adhesive types, surgical procedures, pharmaceutical delivery mechanisms, etc., can solve the problems of fetus hypoplastic lung, poor prognosis, and high mortality of newborns, and achieve the effect of stopping bleeding and inhibiting amniotic fluid leakag

Inactive Publication Date: 2020-12-10
SANYO CHEM IND LTD
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The sealant for reproductive organs described in this patent can be used to stop bleeding and excessive discharge during pregnancy. It works by blocking the cervical canal to prevent amniotic fluid leakage and can easily be removed without causing any damage to the reproductive tissue.

Problems solved by technology

Premature delivery is the highest cause of newborn death and long-term serious sequelae.
Moreover, when premature rupture of membrane occurs during pregnancy around the limit of viability outside the body (5 to 7 months of pregnancy), and conditions without amniotic fluid or with amniotic fluid shortage persist, the fetus will have hypoplastic lung and the prognosis is poor.
In addition, as the egg membrane, which is the ultimate barrier to keep the intrauterine environment sterile, is ruptured, infection will occur in the womb and interruption of pregnancy will be inevitable.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Sealing agent for genitals

Examples

Experimental program
Comparison scheme
Effect test

production example 1

[0149]An autoclave was charged with ethylene glycol (15.5 parts) and potassium hydroxide (3.8 parts). After purging with nitrogen (oxygen concentration in the gas phase: 450 ppm), the mixture was dehydrated in vacuum at 120° C. for 60 minutes.

[0150]Subsequently, a mixture of ethylene oxide (784.5 parts) and 1,2-propylene oxide (200 parts) was injected with pressure at 100° C. to 130° C. over about 10 hours, followed by reaction at 130° C. for 3 hours, whereby a liquid-state crude polyether having an oxyethylene unit content of 80% was obtained.

[0151]The liquid-state crude polyether (1000 parts) was placed in the autoclave which was purged with nitrogen (oxygen concentration in the gas phase: 450 ppm), followed by addition of ion-exchanged water (30 parts) and then synthesized magnesium silicate (sodium content: 0.2%) (10 parts). After another purging with nitrogen, the mixture was stirred at a stirring rate of 300 rpm at 90° C. for 45 minutes. Next, filtration was performed under ni...

production example 2

[0153]An autoclave was charged with propylene glycol (42.2 parts) and potassium hydroxide (3.8 parts). After purging with nitrogen (oxygen concentration in the gas phase: 450 ppm), the mixture was dehydrated in vacuum at 120° C. for 60 minutes.

[0154]Subsequently, a mixture of ethylene oxide (800.0 parts) and 1,2-propylene oxide (157.8 parts) was injected with pressure at 100° C. to 130° C. over about 10 hours, followed by reaction at 130° C. until the volatile content was 0.1% or less, whereby a liquid-state crude polyether was obtained.

[0155]The liquid-state crude polyether was treated with synthesized magnesium silicate as in Production Example 1, whereby a random coadduct (B1-2) of ethylene oxide and 1,2-propylene oxide to propylene glycol was obtained.

[0156]The (B1-2) had a number average molecular weight of 1800, an oxyethylene unit content of 84%, and an alkali metal and / or alkaline earth metal content of 0.03 mmol / kg.

production example 3

[0157]An autoclave was charged with propylene glycol (362 parts) and potassium hydroxide (3.8 parts). After purging with nitrogen (oxygen concentration in the gas phase: 450 ppm), the mixture was dehydrated in vacuum at 120° C. for 60 minutes.

[0158]Subsequently, 1,2-propylene oxide (632 parts) was injected with pressure at 100° C. to 130° C. over about 10 hours, followed by reaction at 130° C. until the volatile content was 0.1% or less, whereby a liquid-state crude polyether was obtained.

[0159]The liquid-state crude polyether was treated with synthesized magnesium silicate as in Production Example 1, whereby a 1,2-propylene oxide adduct (B2-1) to propylene glycol was obtained.

[0160]The (B2-1) had a number average molecular weight of 210, an oxyethylene unit content of 0%, and an alkali metal and / or alkaline earth metal content of 0.04 mmol / kg.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
contact angleaaaaaaaaaa
storage modulusaaaaaaaaaa
Login to View More

Abstract

The present invention aims to provide a cervical canal sealant that can be used as a sealant to stop bleeding in the uterus and vaginal discharge, particularly, a cervical canal sealant that can block the cervical canal to inhibit amniotic fluid leakage and that can also be peeled off without damaging reproductive tissue. The present invention relates to a sealant for reproductive organs in which a cured product (X) at 25° C. has a storage modulus G′ of 200 to 2,000 kPa, the cured product (X) being a cured product obtained by curing the sealant for reproductive organs to a thickness of 120 to 150 μm.

Description

TECHNICAL FIELD[0001]The present invention relates to a sealant for reproductive organs.BACKGROUND ART[0002]Premature rupture of membrane occurs in 5 to 10% of all pregnancies, and about 20% thereof occurs during premature delivery (before 37 weeks of pregnancy). Premature delivery is the highest cause of newborn death and long-term serious sequelae. About one third of the causes of premature delivery before 37 weeks of pregnancy are related to premature rupture of membrane. Moreover, when premature rupture of membrane occurs during pregnancy around the limit of viability outside the body (5 to 7 months of pregnancy), and conditions without amniotic fluid or with amniotic fluid shortage persist, the fetus will have hypoplastic lung and the prognosis is poor. In addition, as the egg membrane, which is the ultimate barrier to keep the intrauterine environment sterile, is ruptured, infection will occur in the womb and interruption of pregnancy will be inevitable.[0003]In regard to prem...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61L31/14A61L31/06C08G18/10C08G18/77
CPCC08G18/10A61L31/14A61L31/06C08G18/77A61L24/04A61L24/001A61L2400/06A61L2430/22C08G18/12C08G18/4808C08G18/4837C08G18/4825C08G18/773C08G2190/00C09J175/04C08L75/04C08G18/302
Inventor KONDO, EIJIMAEDA, HIROAKIKAWABATA, SHINGO
Owner SANYO CHEM IND LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products