Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Production method of solid fuel

a production method and solid fuel technology, applied in the direction of solid fuels, petroleum industry, fuels, etc., can solve the problems of increased production cost, increased handling cost, and increased dust pollution, and achieve the effect of great strength

Inactive Publication Date: 2019-07-25
KOBE STEEL LTD
View PDF2 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The production method described in this patent allows for the creation of solid fuel with greater strength from powder fuel.

Problems solved by technology

Since a powder fuel has a relatively small bulk density and is likely to be lost through scattering, the handling cost is likely to increase and dust pollution may be caused.
However, since molding of the modified coal obtained from a low-rank coal having a low degree of coalification requires compression molding at an extremely high pressure, the production cost increases, and in addition, problematic powderization may occur during transport due to the compression that can be insufficient.
However, even with the technique disclosed in the above-cited publication, powderization may occur depending on a mode of use and a mode of handling of the solid fuel.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Production method of solid fuel

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0067]First, a granular solid fuel was obtained by subjecting a mixture of a coal-derived powder fuel and a cohesive fine coal at a blending mass ratio of 85:10 to compression molding in a double-roll molding machine, the coal-derived powder fuel being powder of a modified coal obtained by thermally dehydrating a brown coal in oil, whereas the cohesive fine coal being a brown coal pulverized and then filtered through a sieve having a mesh opening size of 3 mm. The rotation frequency of the double-roll molding machine was adjusted such that a crushing strength of the solid fuel obtained was 0.7 MPa, which is a value required for a typical coal-based fuel briquette. It is to be noted that the bulk density of the coal-derived powder fuel was measured to be 0.52 g / cc. As the double-roll molding machine, “K205” available from Furukawa Industrial Machinery Systems Co., Ltd. was used, equipped with rolls provided with cavities each having a longitudinal diameter of 38 mm, a shortest diamet...

example 2

[0072]First, a mixture of the coal-derived powder fuel and the cohesive fine coal similar to those of Example 1 at a mass ratio of 70:10 was subjected to compression molding in the double-roll molding machine, with the rotation frequency of the double-roll molding machine being adjusted such that a crushing strength of the solid fuel obtained was 0.7 MPa.

[0073]The solid fuel thus obtained was pulverized and then filtered through a sieve having a mesh opening size of 10 mm to give a pulverized fuel, and a material mixture was obtained by blending the coal-derived powder fuel, the cohesive fine coal, and the pulverized fuel at a mass ratio of 70:10:20. The material mixture was subjected to compression molding in the double-roll molding machine, with the rotation frequency of the double-roll molding machine being adjusted such that a crushing strength of the solid fuel obtained was 0.7 MPa.

[0074]The solid fuel obtained by compression molding of the material mixture containing the pulve...

example 3

[0075]First, a mixture of the coal-derived powder fuel and the cohesive fine coal similar to those of Example 1 at a mass ratio of 60:20 was subjected to compression molding in the double-roll molding machine, with the rotation frequency of the double-roll molding machine being adjusted such that a crushing strength of the solid fuel obtained was 0.7 MPa.

[0076]The solid fuel thus obtained was pulverized and then filtered through a sieve having a mesh opening size of 10 mm to give a pulverized fuel, and a material mixture was obtained by blending the coal-derived powder fuel, the cohesive fine coal, and the pulverized fuel at a mass ratio of 60:20:20. The material mixture was subjected to compression molding in the double-roll molding machine, with the rotation frequency of the double-roll molding machine being adjusted such that a crushing strength of the solid fuel obtained was 0.7 MPa.

[0077]The solid fuel obtained by compression molding of the material mixture containing the pulve...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Provided is a method that produces a solid fuel having a relatively high strength from a powder fuel. The method includes: blending a coal-derived powder fuel with a pulverized fuel having a greater mean particle diameter than the coal-derived powder fuel to obtain a mixture; compression-molding the mixture to obtain a solid fuel; and pulverizing a part of the solid fuel, in which the part of the pulverized solid fuel is used as the pulverized fuel in the blending. A blending proportion of the pulverized fuel with respect to the blending mixture is preferably at least 5 mass % and at most 50 mass %. A cohesive fine coal having a superior cohesive property to the coal-derived powder fuel is preferably further blended in the blending. A blending proportion of the cohesive fine coal with respect to the blending mixture is preferably at least 5 mass % and at most 30 mass %.

Description

TECHNICAL FIELD[0001]The present invention relates to a production method of a solid fuel.BACKGROUND ART[0002]Since a powder fuel has a relatively small bulk density and is likely to be lost through scattering, the handling cost is likely to increase and dust pollution may be caused. Accordingly, compression molding of the powder fuel into a granular form (briquette) has been practiced for handleability.[0003]For example, a modified coal obtained by thermally dehydrating a low-rank coal, e.g., a brown coal, in oil is typically in a powder form and is desired to be compression-molded into a granular form. However, since molding of the modified coal obtained from a low-rank coal having a low degree of coalification requires compression molding at an extremely high pressure, the production cost increases, and in addition, problematic powderization may occur during transport due to the compression that can be insufficient.[0004]In this respect, a technique has been proposed of increasin...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C10L5/08C10L5/04
CPCC10L5/08C10L5/04C10L2290/30C10L2290/32C10L2290/28C10L2290/24C10L2290/60C10L2200/0461C10L5/361C10L2250/06C10L2290/08C10L2290/10C10L2290/50C10L2290/52C10L2290/546C10L2290/58
Inventor TAKAHASHI, YOICHIKINOSHITA, SHIGERUSHIGEHISA, TAKUO
Owner KOBE STEEL LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products