Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Hemodilution cap and methods of use in blood-processing procedures

a technology of hemodilution cap and blood processing procedure, which is applied in the direction of dialysis, other blood circulation devices, and membranes, etc., can solve the problems of compromising the hemofiltrating process, unsatisfactory coagulation of blood, and blood concentration leaving the outflow tubing, so as to prevent hemoconcentration and stasis of blood, facilitate fluid mixing, and prevent coagulation

Inactive Publication Date: 2005-01-06
BRUGGER JAMES M +2
View PDF15 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009] In use, blood is passed through the blood inlet of the entry cap, through the filter membrane fibers, and through the blood outlet of the exit cap. Replacement fluid or dilution fluid, such as saline, Ringer's lactate, or other physiological solutions, is infused into the port adjacent the blood outlet to produce hemodilution at the blood outlet. Alternatively, the fluid is infused into the port adjacent the blood inlet of the entry cap to produce hemodilution at the inlet. In still another alternative method, fluid is infused into the port adjacent the blood inlet of the entry cap and into the port adjacent the blood outlet of the exit cap to produce hemodilution as blood enters and exits the filter housing. In certain constrictions the replacement fluid swirls in a circular pattern in a headspace that is defined by the gap between the filter and the cap. Swirling of the replacement fluid facilitates mixing of the fluid and the blood, thereby preventing hemoconcentration and stasis of blood, and sweeping any particles of thrombus away from the filter.
[0010] The advantages associated with the hemodilution cap described herein include (1) preventing coagulation during blood processing procedures, (2) manufacturing efficiency, i.e., reducing plastic used in disposable components, (3) eliminating up to two bonds and up to two components, (4) less expense in materials costs and manufacturing costs, (5) more robust system, not subject to tolerances like bonding two rigid parts, and (6) integration of parts saves labor, materials, and precious resources.

Problems solved by technology

Undesired coagulation of blood often complicates blood-processing procedures such as hemofiltration, hemodialysis, and hemodiafiltration, particularly where a filter is used.
However, during removal of waste products, fluid is also removed, causing concentration of blood leaving the outflow tubing.
As a result of hemoconcentration, hematocrit rises, and the intrinsic coagulation pathway and platelets are activated causing clotting of blood around the outlet of the filtering column, thereby compromising the hemofiltrating process.
Existing devices are inadequate for this purpose.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Hemodilution cap and methods of use in blood-processing procedures
  • Hemodilution cap and methods of use in blood-processing procedures
  • Hemodilution cap and methods of use in blood-processing procedures

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0025] During blood-processing procedures, such as hemofiltration, hemodialysis, and hemodiafiltration, blood has a tendency to clot as it passes through processing equipment, particularly where it exits the outlet of a filter, due to hemoconcentration. In FIG. 1A, the hemofiltration device includes cylindrical housing 10 which contains filter fibers 20 that remove waste from blood passing through the fibers. It will be understood that any other suitable shape can be used for the housing. Housing 10 is equipped with entry cap 13 having blood inlet 11. Waste and ultrafiltrate that are removed from the blood exits the housing through waste outlet 12. Exit cap 30 is mounted on housing 10 opposite blood entry cap 13. Headspace 31 is formed in the gap between filter fibers 20 and cap 30 and between filters 20 and cap 13. Headspace 31 communicates with blood outlet 32. Each of the inlet 11 waste outlet 12 and blood outlet 32 are adapted for attachment to flexible tubing sections that conn...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Devices and methods that prevent clotting of blood during blood-processing procedures such as hemofiltration, hemodialysis, hemodiafiltration, and peritoneal dialysis are described. The device comprises a cap and a housing that is shaped to receive a blood filter. The housing has an inlet for blood and may have an outlet for waste and ultrafiltrate. The cap is attached to the housing. The cap has an outlet for blood and a port adjacent the outlet for receiving dilution fluid. Methods of use during blood-processing procedures to provide immediate hemodilution to blood exiting a filter are also described.

Description

FIELD OF THE INVENTION [0001] The present invention relates generally to devices and methods useful in preventing coagulation in filtered blood during hemofiltration. More specifically, the devices and methods provide a cap having a port, the cap adapted for attachment to a blood filter housing to provide hemodilution of blood as it enters and / or exits the filter. BACKGROUND OF THE INVENTION [0002] Undesired coagulation of blood often complicates blood-processing procedures such as hemofiltration, hemodialysis, and hemodiafiltration, particularly where a filter is used. Blood generally coagulates by transforming soluble fibrinogen into insoluble fibrin by activation of numerous circulating proteins that interact in a cascading series of limited proteolytic reactions. At each step of reaction, a clotting factor undergoes limited proteolysis and becomes an active protease that in turn activates the next clotting factor until finally a solid fibrin clot is formed. Fibrinogen (factor I)...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61M1/18A61M1/34A61M1/36B01D61/20B01D61/30B01D63/02
CPCA61M1/342A61M1/3672B01D61/20A61M1/3434B01D63/02B01D2313/21B01D61/30A61M1/3437B01D63/034
Inventor BRUGGER, JAMES M.BURBANK, JEFFREY H.STILLIG, MARTIN
Owner BRUGGER JAMES M
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products