Capacitor
a capacitor and electrode technology, applied in the field of capacitors, can solve the problems of poor environmental characteristics, poor moisture resistance and chemical characteristics of sintered aluminum, and the above-mentioned sintered metal used as a capacitor electrode, and achieve the effect of reducing impedance and large capacitan
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
examples 8 and 9
[0026] Powdery niobium nitride having an average particle diameter of 40 to 80 .mu.m and a bound nitrogen content of about 10,000 ppm by weight was sintered at 1,600.degree. C. in vacuo to give sintered niobium nitride bodies having a diameter of 10 mm and a thickness of 1 mm, and containing pores having an average diameter of 7 .mu.m with a porosity of 55%. The sintered niobium nitride bodies were immersed in a bath of pentaethyl niobate liquid, and thereafter, the sintered niobium nitride bodies taken out from the bath were maintained at 85.degree. C. in a steam and then dried at 350.degree. C. whereby a dielectric layer composed of niobium oxide was formed on the sintered niobium nitride bodies.
[0027] Each of chloranil complex of tetrathiotetracene (Example 8) and a mixture of lead acetate and lead sulfate (Example 9) for forming an electrode other than the electrode composed of the sintered niobium nitride bodies was deposited on a plurality of the dielectric layer-formed sinter...
example 10
[0031] The same sintered niobium nitride bodies as prepared in Example 1 were immersed in a bath of pentaethyl tantalat:e liquid, and thereafter, the sintered niobium nitride bodies taken out from the bath were maintained at 85.degree. C. in a steam and then dried at 450.degree. C. whereby a dielectric layer composed of tantalum oxide was formed on the sintered niobium nitride bodies.
[0032] Then an electrolyte composed of a 5% solution of isobutyltripropylammonium borontetrafluoride electrolyte in a mixed liquid of dimethylformamide and ethylene glycol, was applied onto the sintered niobium nitride bodies. The electrolyte-applied sintered niobium nitride bodies were charged in a can, and the can was sealed to give a capacitor.
[0033] The properties of the capacitor were evaluated. The results are shown in Table 3.
example 11
[0035] By the same procedures as employed in Example 1, sintered niobium nitride bodies were made and then niobium oxide dielectric layers were formed on the sintered niobium nitride bodies. An electrolyte was applied to the dielectric layer-formed sintered niobium nitride bodies, and the electrolyte-applied product was charged in a can and the can was sealed to give a capacitor by the same procedures as described in Example 10. The properties of the capacitor were evaluated. The results are shown in Table 3.
PUM
Property | Measurement | Unit |
---|---|---|
electrical conductivity | aaaaa | aaaaa |
particle diameter | aaaaa | aaaaa |
temperature | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com