Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Blood identification instrument based on infrared Raman ultraviolet fluorescence super-continuum spectrum

A supercontinuum and spectrometer technology, applied in the field of non-contact identification of blood samples in sealed test tubes, can solve problems such as affecting the optical properties of blood, and achieve the effect of improving the signal-to-noise ratio

Active Publication Date: 2016-06-01
SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI
View PDF7 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

These interference factors will seriously affect the optical properties of blood, making common optical and spectral methods powerless in the identification of blood in sealed test tubes

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Blood identification instrument based on infrared Raman ultraviolet fluorescence super-continuum spectrum

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0041] The hardware system structure of the sealed blood identification instrument based on infrared Raman, ultraviolet fluorescence and supercontinuum integrated laser spectroscopy is as follows: figure 1 As shown, the hardware system mainly consists of a power supply module 1, a visible spectrum spectrometer 2, an infrared spectrum spectrometer 3, two-input and two-out optical fibers 5, a main control and data analysis system 7, an integrating sphere 35, a test tube manipulator 10, and a connecting rod 11 , guide rail 12, manipulator motion controller 13, sample outdoor cover 18, bottom plate 22, bracket 29, light source outdoor cover 30, optical fiber collimation connector 31, laser pigtail 32, supercontinuum laser 34, objective lens bracket 39, display Micro objective lens 40, objective lens coupler 41, optical fiber collimator 42, Y-shaped coaxial optical fiber 43, first optical fiber coupler 44, second optical fiber coupler 50, Y-shaped optical fiber 51, infrared narrow l...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a blood identification instrument based on an infrared Raman ultraviolet fluorescence super-continuum spectrum. The blood identification instrument comprises a power supply module, an invisible and infrared spectrum section spectrometer, a two-in and two-out optical fiber, a master control and data analysis system, an integrating sphere, a test tube manipulator, a connecting rod, a guide track, a manipulator motion controller, an outer sample chamber cover plate, a bottom plate, a bracket, an outer light source chamber cover plate, an optical fiber collimation connector, a laser pigtail, a super-continuum spectrum laser, an objective bracket, a microobjective, an objective coupling, an optical collimation lens, a Y-shaped coaxial optical fiber, a first optical fiber coupling, a second optical fiber coupling, a Y-shaped optical fiber and an infrared and ultraviolet narrow linewidth laser. The two-in and two-out optical fiber complex spectrometer is connected by using the Y-shaped optical fiber so as to form the hardware, sectional weighted stack is adopted so as to form the software, and thus data information fusion of an infrared Raman spectrum, an ultraviolet fluorescence spectrum and a super-continuum diffuse comprehensive spectrum can be achieved. The blood identification instrument disclosed by the invention can be applied to automatic identification of whole blood, plasma and serum.

Description

technical field [0001] The invention relates to an instrument and method for human and animal blood classification, in particular to an instrument and method for non-contact identification of blood samples in sealed test tubes based on infrared Raman, ultraviolet fluorescence combined with supercontinuous integrated laser spectrum. Background technique [0002] At present, my country adopts a credit system for the import and export of blood and other various biological materials, but the authenticity of various biological materials cannot be directly tested for various reasons. Especially when it comes to special materials such as blood samples, open contact sampling conditions are often not allowed. On the one hand, the blood sample may be contaminated by the testing operation; on the other hand, the pathogenic factors that the blood sample itself may carry will cause occupational exposure to the testing personnel. In view of the above reasons, it is urgent to develop a no...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G01N21/65G01N21/64
CPCG01N21/6402G01N21/65
Inventor 万雄刘鹏希章婷婷陈学岗张志敏张华明
Owner SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products