Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30results about How to "Alleviates the aforementioned drawbacks" patented technology

High brightness optical device

There is provided an optical device, composed of a display source (4), an imaging optical module (8), a projection module (12) having a projection mechanism including an input aperture (10) and output aperture (14) defined by a surface area, and an exit pupil (16). The projection mechanism is non-uniform over the area of the output aperture (14).
Owner:LUMUS LTD

Substrate-Guide Optical Device Utilizing Polarization Beam Splitters

There is provided an optical device, including a light waves-transmitting substrate having two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate wherein the partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, and wherein one or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Owner:LUMUS LTD

Substrate-Guided Optical Device Utilzing Thin Transparent Layer

There is provided an optical device, including a light-transmitting substrate having two major surfaces and edges, an optical element (16) for coupling light waves into the substrate by total internal reflexion, and a plurality of partially reflecting surfaces (22a, 22b, 22c) carried by the substrate. The partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate. At least one of the partially reflecting surfaces (22a, 22b, 22c) does not intersect with at least one of the two major surfaces, and the optical element (16) intersects with at least one of the two major surfaces.
Owner:LUMUS LTD

Substrate-guided optical device utilizing thin transparent layer

There is provided an optical device, including a light-transmitting substrate having two major surfaces and edges, an optical element (16) for coupling light waves into the substrate by total internal reflexion, and a plurality of partially reflecting surfaces (22a, 22b, 22c) carried by the substrate. The partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate. At least one of the partially reflecting surfaces (22a, 22b, 22c) does not intersect with at least one of the two major surfaces, and the optical element (16) intersects with at least one of the two major surfaces.
Owner:LUMUS LTD

Polarizing Optical System

There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other and edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Owner:LUMUS LTD

Substrate-Guided Optical Device Particularly for Vision Enhanced Optical Systems

There is provided an optical system, including a mechanical body (110), a light-transmitting substrate (20) having two major surfaces and edges, embedded in the mechanical body, an optical element (90) for coupling light into the substrate by total internal reflection and a plurality of partially reflecting surfaces (22) carried by the substrate, wherein the partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate. The system also includes an image capturing device (112), a display source (4), and an image-processing unit (114). The image-capturing device (112) is connected via the image-processing unit (114) to the display source (4).
Owner:LUMUS LTD

High brightness optical device

InactiveUS20080106775A1Facilitates structure and fabricationEasy to mergeDiffusing elementsOptical light guidesOptical ModuleDisplay device
There is provided an optical device, comprising a display source; a light-diffuser; an imaging optical module, and an output aperture from the optical device characterized in that the light diffuser is an angular, non-uniform diffuser of light for increasing a portion of light emerging from the display source that passes through the output aperture. A method for improving the brightness of an optical display is also provided.
Owner:LUMUS LTD

Substrate-guide optical device

An optical device, including a light waves-transmitting substrate has two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, one or more of the partially reflecting surfaces (22a, 22b) being an anisotropic surface. The optical device has dual operational modes in see-through configuration. In a first mode, light waves are projected from a display source through the substrate to an eye of a viewer. In a second mode, the display source is shut off and only an external scene is viewable through the substrate.
Owner:LUMUS LTD

Substrate-guided optical devices

There is provided an optical device, having a light-transmitting substrate (20) having at least two major surfaces parallel to each other and edges; a display light source; optical means for coupling light from the light source into the substrate (20) by internal reflection, and at least one partially reflecting surface (22) located in the substrate (20) which is non-parallel to the major surfaces of the substrate wherein the source emits light waves located in a given field-of-view, that the light waves are collimated, that an angular resolution is defined for the optical device, and wherein the angular deviation between any two different rays located in one of the collimated light waves, is smaller than the angular resolution.
Owner:LUMUS LTD

Substrate-Guide Optical Device

There is provided an optical device, including a light waves-transmitting substrate having two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate wherein the partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, and wherein one or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Owner:LUMUS LTD

Optical Device for Light Coupling

There is provided an optical device, including a light-transmitting substrate having two major surfaces parallel to each other and two edges, optics for coupling light into the substrate by internal reflection. One of the edges is slanted with respect to the major surfaces and a portion of the optics for coupling light into the substrate is in contact with, or located adjacent to, the slanted edge.
Owner:LUMUS LTD

Polarizing optical system

There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Owner:LUMUS LTD

Polarizing optical system

There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Owner:LUMUS LTD

Optical devices particularly for remote viewing applications

ActiveUS20050078388A1Simple structureFacilitates fabricationMirrorsDiffraction gratingsField of viewLight wave
There is provided an optical device for transferring light within a given field-of-view, comprising an input aperture; reflecting surfaces, and an output aperture located in spaced-apart relationship from the input aperture such that light waves, located within the field-of-view, that enter the optical device through the input aperture, exit the optical device through the output aperture, wherein the reflecting surfaces are at least one pair of parallel reflecting surfaces and that part of the light waves located within the field-of-view that enter the input aperture, pass directly to the output aperture without being reflected off the at least one pair of parallel reflecting surfaces, while another part of the light waves within the field-of-view that enters the input aperture, arrives at the output aperture after being twice reflected by the at least one pair of parallel reflecting surfaces.
Owner:LUMUS LTD

High Brightness optical device

There is provided an optical device, comprising a display source; a light-diffuser; an imaging optical module, and an output aperture from the optical device characterized in that the light diffuser is an angular, non-uniform diffuser of light for increasing a portion of light emerging from the display source that passes through the output aperture. A method for improving the brightness of an optical display is also provided.
Owner:LUMUS LTD

Light guide optical device

The invention provides an optical device, including a light-transmitting substrate, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces carried by the substrate, characterized in that the partially reflecting surfaces are parallel to each other and are not parallel to any of the edges of the substrate.
Owner:LUMUS LTD

Substrate-guide optical device

An optical device includes a light waves-transmitting substrate having two major surfaces and edges, two electronic display sources, an optical surface for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces carried by the substrate. The partially reflecting surfaces are parallel to each other and located at an angle to the major surfaces. At least two of the partially reflecting surfaces have major axes, mounted with the major axes in different directions. The major surfaces reflect light waves coupled into the substrate at least twice before the light waves are coupled out. The optical device has dual operational modes in see-through configuration. In a first mode, light waves are projected from a display source through the substrate to an eye of a viewer. In a second mode, the display source is shut off and only an external scene is viewable through the substrate.
Owner:LUMUS LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products