Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Multicode direct sequence spread spectrum

Inactive Publication Date: 2002-07-23
WI LAN INC
View PDF76 Cites 141 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

We have recognized that low power DSSS systems complying with the FCC and the DOC regulations for the ISM bands would be ideal communicators provided the problems of CDMA could be resolved and the throughput could be enhanced. To enhance the throughput, we allow a single link (i.e., a single transceiver) to use more than one code at the same time. To avoid the near-far problem only one transceiver transmits at a time. In this patent, we present Multi-Code Direct Sequence Spread Spectrum (MC-DSSS) which is a modulation scheme that assigns up to N codes to an individual transceiver where N is the number of chips per DSSS code. When viewed as DSSS, MC-DSSS requires up to N correlators (or equivalently up to N Matched Filters) at the receiver with a complexity of the order of N.sup.2 operations. When N is large, this complexity is prohibitive. In addition, a nonideal communication channel can cause InterCode Interference (ICI), i.e., interference between the N DSSS codes at the receiver. In this patent, we introduce new codes, which we refer to as "MC" codes. Such codes allow the information in a MC-DSSS signal to be decoded in a sequence of low complexity parallel operations while reducing the ICI. In addition to low complexity decoding and ICI reduction, our implementation of MC-DSSS using the MC codes has the following advantages: 1. It does not require the stringent synchronization DSSS requires. Conventional DSSS systems requires synchronization to within a fraction of a chip whereas MC-DSSS using the MC codes requires synchronization to within two chips. 2. It does not require the stringent carrier recovery DSSS requires. Conventional DSSS requires the carrier at the receiver to be phase locked to the received signal whereas MC-DSSS using the MC codes does not require phase locking the carriers. Commercially available crystals have sufficient stability for MC-DSSS. 3. It is spectrally efficient.

Problems solved by technology

When N is large, this complexity is prohibitive.
In addition, a nonideal communication channel can cause InterCode Interference (ICI), i.e., interference between the N DSSS codes at the receiver.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Multicode direct sequence spread spectrum
  • Multicode direct sequence spread spectrum
  • Multicode direct sequence spread spectrum

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

FIG. 1 illustrates the transmitter of the MC-DSSS modulation technique generating the kth MC-DSSS frame bearing N symbols of information. The symbols can be either analog or digital.

A converter 10 converts a stream of data symbols into plural sets of N data symbols each. A computing means 12 operates on the plural sets of N data symbols to produce modulated data symbols corresponding to an invertible randomized spreading of the stream of data symbols. A combiner 14 combines the modulated data symbols for transmission. The computing means shown in FIG. 1 includes a source 16 of N direct sequence spread spectrum code symbols and a modulator 18 to modulate each ith data symbol from each set of N data symbols with the I code symbol from the N code symbol to generate N modulated data symbols, and thereby spread each I data symbol over a separate code symbol.

FIG. 2 illustrates the receiver of the MC-DSSS modulation techniques accepting the kth MC-DSSS frame and generating estimates for th...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

In this patent, we present MultiCode Direct Sequence Spread Spectrum (MC-DSSS) which is a modulation scheme that assigns up to N DSSS codes to an individual user where N is the number of chips per DSSS code. When viewed as DSSS, MC-DSSS requires up to N correlators (or equivalently up to N Matched Filters) at the receiver with a complexity of the order of N2 operations. In addition, a non ideal communication channel can cause InterCode Interference (ICI), i.e., interference between the N DSSS codes. In this patent, we introduce new DSSS codes, which we refer to as the "MC" codes. Such codes allow the information in a MC-DSSS signal to be decoded in a sequence of low complexity parallel operations which reduce the ICI. In addition to low complexity decoding and reduced ICI. MC-DSSS using the MC codes has the following advantages: (1) it does not require the stringent synchronization DSSS requires, (2) it does not require the stringent carrier recovery DSSS requires and (3) it is spectrally efficient.

Description

FIELD OF THE INVENTIONThe invention deals with the field of multiple access communications using Spread Spectrum modulation. Multiple access can be classified as either random access, polling, TDMA, FDMA, CDMA or any combination thereof. Spread Spectrum can be classified as Direct Sequence, Frequency-Hopping or a combination of the two.BACKGROUND OF THE INVENTIONCommonly used spread spectrum techniques are Direct Sequence Spread Spectrum (DSSS) and Code Division Multiple Access (CDMA) as explained in Chapter 8 of "Digital Communication" by J. G. Proakis, Second Edition, 1991, McGraw Hill, DSSS is a communication scheme in which information bits are spread over code bits (generally called chips). It is customary to use noise-like codes called pseudo random noise (PN) sequences. These PN sequences have the property that their auto-correlation is almost a delta function and their cross-correlation with other codes is almost null. The advantages of this information spreading are: 1. The...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H04L27/26H04L5/02H04B1/707H04J13/00H04B1/709H04J11/00
CPCH04B1/707H04B1/709H04B2201/70703H04J11/00H04J13/0077H04L5/026H04L27/2602H04L27/2628H04L27/265
Inventor FATTOUCHE, MICHEL T.ZAGHLOUL, HATIM
Owner WI LAN INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products