[0018]The invention provides user selectable appliance placement references for enabling the practitioner or the user in placing virtual appliances such as virtual brackets on virtual teeth model of a patient, and in evaluating their effectiveness in realizing the desired goals of the treatment. In a preferred embodiment of the invention, an appliance height reference is provided for facilitating placement of the virtual appliances on a three-dimensional model of a patient's teeth. In a preferred aspect of the invention, the appliance height reference is implemented as a bracket height reference for placing virtual brackets on virtual teeth of a patient. The user selects a value for placing the virtual bracket on the virtual tooth at the desired bracket height from the reference options available on the unified workstation for orthodontic treatment planning, described later on in greater detail, and the unified workstation places and displays the virtual bracket on the virtual tooth at or near the selected height depending upon the tooth surface geometry and texture for suitably accepting the bracket. Alternatively, the user can specify the desired or customized bracket height reference value for placing the virtual bracket on the virtual tooth. The bracket height reference is similar in functionality to the bracket height measured from a bracket height-measuring gauge; but provides much improved accuracy and consistency in the height measurements over the bracket height-measuring gauge. Additionally, meaningful height measurements for crooked or deformed teeth that are very difficult to realize with the bracket height-measuring gauge can easily be made with the bracket height reference of the present invention.
[0023]In its broader aspects, the treatment planning apparatus comprises a workstation having a processing unit and a display, and a memory storing a virtual, complete three-dimensional model representing the dentition of a patient. The virtual three-dimensional model can be obtained from one of several possible sources; including from a scanning of the dentition. The apparatus further includes software executable by the processing unit that accesses the model and displays the model on the display of the workstation. The software further includes navigation tools, e.g., typed commands, icons and / or graphical devices superimposed on the displayed model, that enables a user to manipulate the model on the display and simulate the movement of at least one tooth in the model relative to other teeth in the model in three-dimensional space, and quantify the amount of movement precisely. This simulation can be used, for example, to simulate the bracket placement on virtual teeth of the patient.
[0026]One of the primary tools in the treatment planning apparatus is the selection and customization of a desired or target archform. Again, because the teeth are individual tooth objects, they can be moved independently of each other to define an ideal arch. This development of the target archform could be calculated using interpolation or cubic spline algorithms. Alternatively, it can be customized by the user specifying a type of archform (e.g, Roth), and the tooth are moved onto that archform or some modification of that archform. The archform can be shaped to meet the anatomical constraints of the patient. After the initial archform is designed, the user can again position the teeth on the archform as they deem appropriate on a tooth by tooth basis. The treatment planning software thus enables the movement of the virtual tooth objects onto an archform which may represent, at least in part, a proposed treatment objective for the patient.
[0029]In a preferred embodiment, the method of placing brackets on three-dimensional model of the patient's teeth using bracket placement references includes the step of providing displays on the screen display enabling a user of the workstation to operate the user interface so as to place virtual three-dimensional objects representing orthodontic appliances, e.g., brackets, onto the surface of teeth in the virtual model. A library of the virtual brackets can be stored in memory and a landmarking procedure used to place the brackets on the teeth at the desired location. Anatomical considerations may dictate movement of the brackets from their originally selected position to a new position. Accordingly, the software provides navigational tools enabling a user to change the position of the brackets relative to the teeth.
[0031]The treatment planning software includes features enabling more accurate diagnosis. For one thing, the virtual model of the dentition can be manipulated in three dimensions at will, resulting in complete visual assessment of the model. Measurement tools are also provided by which the orthodontist can determine the distance between any two points on the model. This allows the user to quantify the patient's morphology both at initial and at target stages or states. Thus, treatment progress, proposed changes in appliance design, or tooth movement can be quantified precisely. By measuring the differences and changes in morphology during the care cycle, the orthodontist can quickly and accurately assess patient treatment. Changes in treatment can be made early on. The result is shorter treatment times (and the ability for the orthodontist to service more patients per year).