Process and chemistry for reducing dolomite concentrations in phosphate processing

a technology of phosphate processing and process, applied in the field of phosphate processing, can solve the problems of less than 100 microns of particle size, and achieve the effect of reducing dolomite concentration and minimizing the exten

Inactive Publication Date: 2016-02-11
ARR MAZ PRODS
View PDF7 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]The magnesium suppressant / flocculant may be used in a method of reducing dolomite concentrations in phosphate processing. The method may comprise adding the magnesium suppressant to phosphate-containing fractions; conditioning the fractions with fatty acid; and subjecting the fractions to a phosphate flotation. Adding the magnesium suppressant to the fractions may prevent magnesium within the fractions from interacting with the fatty acid, which may minimize the extent to which the magnesium interacts with hydrophobic bubbles during the phosphate flotation. The method may further comprise grinding the fractions prior to adding the magnesium suppressant. The grinding may result in a particle size of less than 100 microns.

Problems solved by technology

The method may further comprise grinding the fractions prior to adding the magnesium flocculant, potentially resulting in a particle size of less than 100 microns.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0019]In a first embodiment, the process for reducing dolomite concentrations may involve adding a step prior to step 3, the first flotation step. Prior to conditioning the phosphate slurry or rock with fatty acid before entering the rougher float cell, a magnesium suppressant may be added. The magnesium suppressant may selectively complex with the magnesium, which may prevent or minimize the magnesium from interacting with the fatty acid, thus minimizing its interaction with the hydrophobic bubbles, which is what removes the phosphate. Essentially, by complexing with the magnesium carbonate, the magnesium suppressant may inhibit the magnesium carbonate from complexing with the fatty acid that would generally make it float due to the similar chemical characteristics to the desired calcium phosphate.

[0020]Further improvement may be found by grinding the material prior to adding the magnesium suppressant, as discussed above. The grinding may occur through pipe sheering during transpor...

second embodiment

[0021]In a second embodiment, the process for reducing dolomite concentrations may occur at the chemical plant. During processing, the phosphate rock may be transferred into a clarifier or thickener. During this step, the magnesium suppressant may be added to selectively flocculate the dolomite from the calcium phosphate. The dolomite may then settle to the bottom of the thickener or clarifier and be removed from the bottom and transferred to a tailings pond while the calcium phosphate is separated. Alternately, the phosphate product entering the chemical plant may be rinsed with pond water, which may extract much of the magnesium as soluble magnesium. The calcium phosphate may be filtered or removed by some other means. The now magnesium enriched water may then be treated with either the magnesium suppressant or a combination or coagulant and magnesium suppressant. In both in-plant options, the magnesium suppressant should complex with the magnesium carbonate preferentially over ca...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
molecular weightaaaaaaaaaa
molecular weightaaaaaaaaaa
particle sizeaaaaaaaaaa
Login to view more

Abstract

A magnesium suppressant/flocculant for use in separating dolomite from calcium phosphate. The magnesium suppressant/flocculant may be applied at a mine site prior to subjecting ore fractions to phosphate flotation or at a chemical plant after grinding.

Description

CROSS REFERENCE[0001]This application is based on and claims priority to United States Provisional Patent Application No. 62 / 035,546 filed Aug. 11, 2014.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]This invention relates generally to a phosphate processing, and more particularly, but not by way of limitation, to a process and chemistry for dolomite suppression during phosphate flotation or for selective flocculation of dolomite from process waters or calcium phosphate, such as Francolite, apatite, etc.[0004]2. Description of the Related Art[0005]Magnesium is becoming more and more of a concern to phosphate producers. They have known about dolomite ores for decades, but have been able to selectively mine the high quality ores, thus bypassing those rich in the magnesium-containing dolomite. The concern of magnesium comes from the quality or concentration that must be processed at the fertilizer production facilities, who are the customers of the mined phosphate prod...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B03B5/44C08F216/08C08F220/06C08F220/28C08F220/56C08F228/02
CPCB03B5/44C08F220/06C08F228/02C08F2220/281C08F220/56C08F220/28C08F2216/085C08F216/08B03D1/008B03D1/01B03D1/012B03D1/016B03D2201/06B03D2201/002C08F216/085B03D1/021
Inventor MOORE, LUCAS R.PARKER, TODDWILLIS, LEON
Owner ARR MAZ PRODS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products