Multi-core, multi-blade, and multi-node network environment simulation

a network environment and simulation technology, applied in the field of network work, can solve the problems of not being able to fully simulate a fiber network, unable to fully test a complex embedded software system, and the hardware that the software is supposed to run on is usually not availabl

Active Publication Date: 2012-02-02
CIENA
View PDF0 Cites 25 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0003]In an exemplary embodiment, a network simulation system includes one or more interconnected workstations; software executed on the one or more workstations, wherein the software is configured to: operate a plurality of virtual machines with each virtual machine executing a hardware simulation application configured to operate in a same manner as a corresponding actual hardware device; and interface to a software load via a driver within each of the plurality of virtual machines, wherein the software load is associated with a network element. The software may be configured to operate a virtual switch interconnecting two or more of the virtual machines thereby forming a chassis. Also, the software may be configured to operate a fiber simulation in two or more of the plurality of virtual machines, wherein the fiber simulation is configured to simulate fiber connectivity between the two or more of the plurality of virtual machines. The software load may include a software load configured to operate on future developed hardware, and wherein the network simulation system is utilized to test the software load via the hardware simulation application. The software load operates on the plurality of virtual machines and on actual hardware. The plurality of virtual machines simulates a plurality of nodes with fiber connections simulated therebetween. The software may be configured to operate a virtual test set configured to inject simulated traffic through the plurality of nodes, and the virtual test set may include any of SONET, SDH, Optical Transport Network, and Ethernet. The software may be configured to simulate a data plane including time division multiplexed traffic through the plurality of nodes or simulate Ethernet packets through the plurality of nodes.
[0004]In another exemplary embodiment, a network simulation method includes operating a plurality of virtual machines one or more interconnected workstations with each virtual machine executing a hardware simulation application configured to operate in a same manner as a corresponding actual hardware device; operating a software load corresponding to a network element, wherein the software load is configured to execute on the actual hardware device; and simulating the actual hardware device via the plurality of virtual machines to operate the software ...

Problems solved by technology

With respect to development and testing of software related to a particular network element, hardware that the software is supposed to run on is usually not available due to expense, limited availability of the hardware, or simply that the ha...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Multi-core, multi-blade, and multi-node network environment simulation
  • Multi-core, multi-blade, and multi-node network environment simulation
  • Multi-core, multi-blade, and multi-node network environment simulation

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0015]In various exemplary embodiments, the present invention provides systems and methods for a simulation environment that simulates hardware at a fiber level, a data plane level, a card level, and a chassis level. The simulation environment may be utilized in development and testing of complex, real time, embedded software systems, such as, for example, routers, switches, access devices, base stations, optical switches, optical add / drop multiplexers, DWDM devices, Ethernet switches, Optical Transport Network (OTN) switches, and the like. In an exemplary embodiment, the simulation environment operates on one or more workstations utilizing a virtual machine to operate a virtualized module, line card, line blade, etc. Further, a plurality of virtual machines may operate together to operate a virtualized chassis forming a network element. Advantageously, the present invention provides state of the art data plane traffic and control plane simulation that reduces development time and c...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present disclosure provides systems and methods for a simulation environment that simulates hardware at a fiber level, a data plane level, a card level, and a chassis level. The simulation environment may be utilized in development and testing of complex, real time, embedded software systems, such as, for example, routers, switches, access devices, base stations, optical switches, optical add/drop multiplexers, Ethernet switches, and the like. In an exemplary embodiment, the simulation environment operates on one or more workstations utilizing a virtual machine to operate a virtualized module, line card, line blade, etc. Further, a plurality of virtual machines may operate together to operate a virtualized chassis forming a network element and with a plurality of virtualized chassis forming a network. Advantageously, the present invention provides state of the art data plane traffic and control plane simulation that reduces development time and cost while increasing design flexibility.

Description

FIELD OF THE INVENTION[0001]The present invention relates generally to networking. More particularly, the present invention relates to a network simulation system and method providing a simulation environment for the development and testing of complex, real time, embedded software systems.BACKGROUND OF THE INVENTION[0002]Conventional networks typically include interconnected network elements or nodes in various configurations. Example network elements may include routers, switches, access devices, base stations, optical switches, optical add / drop multiplexers, dense wave division multiplexers (DWDM), and the like. Each network element includes a combination of hardware, software, and firmware and typically a physical implementation includes a plurality of modules, cards, blades, etc. interconnected via an interface such as a backplane, mid-plane, etc. Effectively, each network element is a complex, real time, embedded software system. With respect to development and testing of softw...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G06F17/50
CPCH04L41/145G06F9/45504G06F2009/45595G06F2009/4557G06F11/301G06F2212/151G06F9/5077G06F9/4856G06F9/45533G06F21/53
Inventor CARROLL, JONDIMOLA, DOUGFREZELL, ANDREW
Owner CIENA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products