Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes

a technology of oligonucleotide spotting and probes, applied in biochemical apparatus and processes, chemical libraries, combinational chemistry, etc., can solve the problems of slow growth of this type of testing in the clinical laboratory, reduced sensitivity, and high degree of non-specific binding, so as to speed up molecular diagnostic assays, reduce reagent consumption and cost, and accelerate detection time

Inactive Publication Date: 2011-12-22
GENEASYS
View PDF3 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0089]The easily usable, mass-producible, and inexpensive microfluidic device with integral digital memory accepts an input fluid and processes it. The digital memory is used to store the data and control information required during the functioning of the device and the module incorporating the device. The digital memory being integral to the device, provides for an easily manufacturable, mass-producible, easily usable, and inexpensive microfluidic system with low component-count.
[1458]The data automation provided by the combined apparatus for loading of oligonucleotide spotting devices and oligonucleotide spotting provides for an automated, safe, secure, and inexpensive technique of data monitoring and management in the automated manufacturing environment.

Problems solved by technology

Insufficient stringency can result in a high degree of nonspecific binding.
Excessive stringency can lead to a failure of appropriate binding, which results in diminished sensitivity.
Despite the advantages that molecular diagnostic tests offer, the growth of this type of testing in the clinical laboratory has been slower than expected and remains a minor part of the practice of laboratory medicine.
This is primarily due to the complexity and costs associated with nucleic acid testing compared with tests based on methods not involving nucleic acids.
However, controlling fluid flow through the LOC device, adding reagents, controlling reaction conditions and so on necessitate bulky external plumbing and electronics.
Connecting a LOC device to these external devices effectively restricts the use of LOC devices for molecular diagnostics to the laboratory setting.
The cost of the external equipment and complexity of its operation precludes LOC-based molecular diagnostics as a practical option for point-of-care settings.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
  • Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
  • Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

Overview

[1569]This overview identifies the main components of a molecular diagnostic system that incorporates embodiments of the present invention. Comprehensive details of the system architecture and operation are set out later in the specification.

[1570]Referring to FIGS. 1, 2, 3, 104 and 105, the system has the following top level components:

[1571]Test modules 10 and 11 are the size of a typical USB memory key and very cheap to produce. Test modules 10 and 11 each contain a microfluidic device, typically in the form of a lab-on-a-chip (LOC) device 30 preloaded with reagents and typically more than 1000 probes for the molecular diagnostic assay (see FIGS. 1 and 104). Test module 10 schematically shown in FIG. 1 uses a fluorescence-based detection technique to identify target molecules, while test module 11 in FIG. 104 uses an electrochemiluminescence-based detection technique. The LOC device 30 has an integrated photosensor 44 for fluorescence or electrochemiluminescence detection...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Volumeaaaaaaaaaa
Volumeaaaaaaaaaa
Volumeaaaaaaaaaa
Login to View More

Abstract

An apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes, the apparatus having a plurality of oligonucleotide vials, each with a droplet dispenser, a mounting surface for detachably mounting an oligonucleotide spotting device, a chuck for detachably mounting the oligonucleotide spotting device adjacent the mounting surface, and, a control processor for operative control of the oligonucleotide vials, the oligonucleotide spotting device when mounted in the chuck and movement of the mounting surface relative to the oligonucleotide vials, and the oligonucleotide spotting device, wherein, the control processor is configured to activate the droplet dispensers, and move the oligonucleotide spotting device into registration with the oligonucleotide vials.

Description

FIELD OF THE INVENTION[0001]The present invention relates to diagnostic devices that use microsystems technologies (MST). In particular, the invention relates to microfluidic and biochemical processing and analysis for molecular diagnostics.CO-PENDING APPLICATIONS[0002]The following applications have been filed by the Applicant which relate to the present application:GBS001USGBS002USGBS003USGBS005USGBS006USGSR001USGSR002USGAS001USGAS002USGAS003USGAS004USGAS006USGAS007USGAS008USGAS009USGAS010USGAS012USGAS013USGAS014USGAS015USGAS016USGAS017USGAS018USGAS019USGAS020USGAS021USGAS022USGAS023USGAS024USGAS025USGAS026USGAS027USGAS028USGAS030USGAS031USGAS032USGAS033USGAS034USGAS035USGAS036USGAS037USGAS038USGAS039USGAS040USGAS041USGAS042USGAS043USGAS044USGAS045USGAS046USGAS047USGAS048USGAS049USGAS050USGAS054USGAS055USGAS056USGAS057USGAS058USGAS059USGAS060USGAS061USGAS062USGAS063USGAS065USGAS066USGAS067USGAS068USGAS069USGAS070USGAS080USGAS081USGAS082USGAS083USGAS084USGAS085USGAS086USGAS087USGAS...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C40B60/12
CPCB01L3/5027Y10T436/25B01L3/502738B01L7/52B01L2200/10B01L2300/023B01L2300/024B01L2300/0636B01L2300/0654B01L2300/0883B01L2300/10B01L2300/1827B01L2400/0406B01L2400/0633B01L2400/0677B01L2400/0688F16K99/003F16K99/0036G01N27/223C12Q1/68Y10T436/107497Y10T436/173845Y10T436/143333Y10T436/11Y10T436/145555Y10T436/203332Y10T436/25375B01L3/502707Y10T137/0352Y10T137/0391Y10T137/1044Y10T137/206Y10T137/2076Y10T137/2202Y02A90/10
Inventor AZIMI, MEHDISILVERBROOK, KIA
Owner GENEASYS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products