Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

A device and method for three-dimensional reconstruction of a single frame image based on deep learning

A technology of 3D reconstruction and deep learning, which is applied in neural learning methods, image enhancement, image analysis, etc., can solve problems such as poor precision, large limitations of multi-frame images, and low accuracy, so as to improve precision and accuracy, enrich The effect of detailed features and application scenarios

Active Publication Date: 2021-02-09
中译文娱科技(青岛)有限公司
View PDF5 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0003] However, most of the 3D reconstruction algorithms are 3D reconstruction of multi-frame images. In practical applications, multi-frame images have great limitations and cannot be reconstructed in real time, and cannot be used for 3D reconstruction of dynamic non-rigid objects.
However, for the traditional single-frame reconstruction method, the accuracy is not high, and the surface details cannot be reconstructed, so it is difficult to apply to scenes requiring high precision
The previous 3D reconstruction algorithm based on deep learning cannot achieve single frame, poor accuracy, poor color robustness, and cannot three-dimensionally reconstruct objects with multiple colors on the surface

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • A device and method for three-dimensional reconstruction of a single frame image based on deep learning
  • A device and method for three-dimensional reconstruction of a single frame image based on deep learning
  • A device and method for three-dimensional reconstruction of a single frame image based on deep learning

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0031] The single-frame image three-dimensional reconstruction device based on deep learning, including a host computer, is characterized in that it also includes a support frame 1, a high-definition camera 2 is arranged on the top of the support frame, and three parallel light LED surface light sources 3 are arranged around the high-definition camera 2, and the high-definition The camera 2 and each parallel light LED surface light source 3 are located on the same horizontal plane, and the distances from the three parallel light LED surface light sources 3 to the high-definition camera 2 are equal, and each parallel light LED surface light source 3 is connected to the high-definition camera 2 and its adjacent parallel light LED surface The light source 3 forms an included angle of 120 degrees, and the three parallel light LED surface light sources 3 are respectively white-red, white-green, and white-blue light sources; the high-definition camera 2 is connected to the host comput...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The device and method for three-dimensional reconstruction of a single-frame image based on deep learning includes a host computer, a support frame and a high-definition camera on the top, and three 120-degree parallel LED surface light sources are arranged around the high-definition camera contour. The method includes shooting training samples, taking the images illuminated by red, green and blue lights at the same time as the input data required for the training model, taking the gray value of the three images sequentially illuminated by white light, and converting them into single-channel images as the real training model. value, using the deep learning method and the input data to construct a pixel-by-pixel fully connected network model for 3D reconstruction of a single frame image, train the model, use the back propagation algorithm to continuously adjust and optimize the network parameters, and predict the 3D information of the target surface. The result of the network prediction is reconstructed using the photometric stereo algorithm to obtain the three-dimensional information of the surface of the object. The present invention constructs a network model suitable for three-dimensional reconstruction of a single frame image by improving the structure of the network, and the three-dimensional reconstruction of more frame images increases the application scenarios.

Description

technical field [0001] The invention relates to a device for three-dimensional reconstruction of a single-frame image, and the key is a method for three-dimensional reconstruction of a single-frame image based on deep learning, which belongs to the field of three-dimensional reconstruction of a single-frame image Background technique [0002] 3D reconstruction refers to the process of establishing a mathematical model of a 3D object in a real scene in a computer, and it is a popular research direction in the field of computer vision. Compared with two-dimensional images, three-dimensional models can provide depth data of objects, so that they can more comprehensively display the characteristics of objects, so they are widely used in many fields such as computer animation, human-computer interaction, and modern medicine. [0003] However, most of the 3D reconstruction algorithms are 3D reconstruction of multi-frame images. In practical applications, multi-frame images have gr...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): G06T17/00G06T3/40G06N3/04G06N3/08
CPCG06T3/4038G06T17/00G06N3/084G06T2200/08G06T2207/20021G06T2207/20084G06T2207/20081G06N3/048
Inventor 举雅琨董军宇亓琳卢亮
Owner 中译文娱科技(青岛)有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products