Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Photoelectrochemical sensor for estradiol based on boron-doped iron cobalt oxide two-dimensional nano composite material as well as preparation method and application of photoelectrochemical sensor

A two-dimensional nanometer, photoelectrochemical technology, applied in the direction of material electrochemical variables, scientific instruments, analytical materials, etc., can solve the problem of reducing charge carrier recombination, and achieve the effect of improving detection sensitivity and good conductivity

Active Publication Date: 2017-09-26
山东利源康赛环境咨询有限责任公司
View PDF5 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Moreover, the heterojunction is also sufficiently induced to sterically effectively reduce the recombination of charge carriers during the coupled hybridization process.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0048] This embodiment provides an estradiol photoelectrochemical sensor based on a boron-doped iron-cobalt oxide two-dimensional nanocomposite material and its preparation and application. The preparation method includes the following steps:

[0049] S11: Use ITO conductive glass as the working electrode, platinum wire electrode as the counter electrode, and g-C 3 N 4 The mixed solution with graphene oxide is the electrolyte. In the two-electrode system, cyclic voltammetry is used, the voltage range is -1.4 to 0.4V, the scan rate is 60mV / s, and the electrodeposition is 20 laps. The deposited electrode is used Wash with deionized water to obtain g-C 3 N 4 The modified working electrode; where, g-C 3 N 4The configuration method of the mixed solution with graphene oxide is: add 5mg of g-C 3 N 4 Mix with 0.1mg of graphene oxide, add 10mL of deionized water, then stir for 10min, and then conduct ultrasonic treatment in a water bath for 1 hour to obtain g-C 3 N 4 and graphe...

Embodiment 2

[0062] This embodiment provides an estradiol photoelectrochemical sensor and its preparation and application. The preparation method includes the following steps:

[0063] S11: Use ITO conductive glass as the working electrode, platinum wire electrode as the counter electrode, and g-C 3 N 4 The mixed solution with graphene oxide is the electrolyte. In the two-electrode system, cyclic voltammetry is adopted, the voltage range is -1.4 ~ 0.4V, the scan rate is 80mV / s, and the electrodeposition is 15 laps. The deposited electrode is used Wash with deionized water to obtain g-C 3 N 4 The modified working electrode; where, g-C 3 N 4 The configuration method of the mixed solution with graphene oxide is: add 5mg of g-C 3 N 4 Mix with 0.3mg of graphene oxide, add 10mL of deionized water, then stir for 10min, and then conduct ultrasonic treatment in a water bath for 1 hour to obtain g-C 3 N 4 and graphene oxide mixed solution.

[0064] S12: the g-C obtained in step S11 3 N 4 ...

Embodiment 3

[0075] This embodiment provides an estradiol photoelectrochemical sensor and its preparation and application. The preparation method includes the following steps:

[0076] S11: Use ITO conductive glass as the working electrode, platinum wire electrode as the counter electrode, and g-C 3 N 4 The mixed solution with graphene oxide is the electrolyte. In the two-electrode system, the cyclic voltammetry is adopted, the voltage range is -1.4~0.4V, the scan rate is 100mV / s, and the electrodeposition is 11 laps, and the deposited electrode is used Wash with deionized water to obtain g-C 3 N 4 The modified working electrode; where, g-C 3 N 4 The configuration steps of the mixed solution of graphene oxide and graphene oxide are as follows: 5 mg of g-C 3 N 4 Mix with 0.5mg of graphene oxide, add 10mL of deionized water, then stir for 10min, and then conduct ultrasonic treatment in a water bath for 1 hour to obtain g-C 3 N 4 and graphene oxide mixed solution.

[0077] S12: the g...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses a photoelectrochemical sensor for estradiol based on a boron-doped iron cobalt oxide two-dimensional nano composite material as well as a preparation method and application of the photoelectrochemical sensor. The preparation method comprises the following steps: firstly, modifying a two-dimensional nano material g-C3N4 on ITO (Indium Tin Oxide) conductive glass by adopting an electrodeposition method; secondly, carrying out in-situ grown of iron cobalt oxide by adopting a hydrothermal method, and further preparing to obtain a working electrode loaded with the g-C3N4, doped with boron and modified by the iron cobalt oxide Bi@Fe*Co<1->*O3 / g-C3N4; finally, loading an estradiol antibody by using good biocompatibility and large specific surface area of the material. During detection, L-ascorbic acid-2-trisodium phosphate (AAP) can be catalyzed by boron-doped iron cobalt oxide Bi@Fe*Co<1->*O3 to generate L-ascorbic acid AA in situ, further an electron donor is provided for photoelectric detection, and then photocurrent intensity is correspondingly reduced by using the influence of specific combination of the antibody and antigen on electronic transmission capacity; finally, the construction of the photoelectrochemical sensor for the estradiol by adopting a mark-free photoelectrochemical detection method is realized.

Description

technical field [0001] The present invention relates to the technical field of preparation of novel nano functional materials and detection of biochemical sensors, in particular to a photoelectrochemical sensor which can be used for detection of estradiol and its preparation and application, in particular to a two-dimensional sensor based on boron-doped iron-cobalt oxide Nanocomposite photoelectrochemical sensor for estradiol and its preparation and application. Background technique [0002] Environmental Estrogens (Environmental Estrogens), also known as environmental hormones, are a class of environmental endocrine disrupting substances that have estrogenic effects or antagonistic androgen effects in the environment. These substances widely exist in rivers, soil, air and agricultural products, and can enter human or animal bodies through the food chain or direct contact, interfere with the endocrine system of the body, destroy the normal hormone levels in the plasma, and t...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G01N27/327G01N27/30
Inventor 高丕成黎荣霞姜艳艳周大锋王晓东魏晓鹏王亚男杨青青
Owner 山东利源康赛环境咨询有限责任公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products