Amphiphilic superparamagnetism magnetic resonance contrast medium
A magnetic resonance contrast agent and superparamagnetic technology, which is applied in the direction of nuclear magnetic resonance/magnetic resonance imaging contrast agent, etc., can solve the problems of low magnetic moment and R2 coefficient, and cannot be used for magnetic resonance imaging, and achieves high stability, easy sedimentation, Small particle size effect
Inactive Publication Date: 2010-12-01
SHANGHAI NORMAL UNIVERSITY
View PDF5 Cites 2 Cited by
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
However, studies have shown that the magnetic moment and R2 coefficient of ferric oxide nanomaterials are very low, which is not suitable for advanced magnetic resonance imaging applications.
Method used
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View moreImage
Smart Image Click on the blue labels to locate them in the text.
Smart ImageViewing Examples
Examples
Experimental program
Comparison scheme
Effect test
Embodiment 1
Embodiment 2
Embodiment 3
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More PUM
Login to View More
Abstract
The invention discloses an amphiphilic superparamagnetism magnetic resonance contrast medium and a preparation method thereof. The contrast medium takes MnFe2O4 nanometer grains as cores; polyalcohol The invention discloses an amphiphilic superparamagnetism magnetic resonance contrast medium and a preparation method thereof. The contrast medium takes MnFe2O4 nanometer grains as cores; polyalcoholmical compatibility, low toxicity and good stability. The preparation method has the advantages of simple operation, low cost, low requirements on the equipment, and easy realization of industrialiological compatibility, low toxicity and good stability. The preparation method has the advantages of simple operation, low cost, low requirements on the equipment, and easy realization of industrialized production.ized production.olecules evenly clad the surfaces of the MnFe2O4 nanometer grains; and part of hydroxies on the outer ends of the polyalcohol molecules react with 9-fluorenylmethyl chloroformate to form amphiphilicmolecules evenly clad the surfaces of the MnFe2O4 nanometer grains; and part of hydroxies on the outer ends of the polyalcohol molecules react with 9-fluorenylmethyl chloroformate to form amphiphilicshell structures through acyl chloride reactions. The preparation method comprises the following steps: taking the polyalcohol as a solvent, pyrolyzing ferric and manganese acetylacetonates at a highshell structures through acyl chloride reactions. The preparation method comprises the following steps: taking the polyalcohol as a solvent, pyrolyzing ferric and manganese acetylacetonates at a hightemperature to obtain the MnFe2O4 nanometer grains clad by the polyalcohol molecules through, and then carrying out the acyl chloride reaction between 9-fluorenylmethyl chloroformate and polyalcohol htemperature to obtain the MnFe2O4 nanometer grains clad by the polyalcohol molecules through, and then carrying out the acyl chloride reaction between 9-fluorenylmethyl chloroformate and polyalcohol hydroxies on the surfaces of the nanometer grains. The contrast medium has the advantages of small grain size, high crystallinity, high saturation magnetization rate, high relaxation capability, good bydroxies on the surfaces of the nanometer grains. The contrast medium has the advantages of small grain size, high crystallinity, high saturation magnetization rate, high relaxation capability, good biolog
Description
An amphiphilic superparamagnetic magnetic resonance contrast agent technical field The invention relates to a superparamagnetic magnetic resonance contrast agent, in particular to an amphiphilic shell structure with MnFe2O4 nanoparticles as the core, which has a hydrophilic and lipophilic amphiphilic shell structure, and has a simple preparation process, low manufacturing cost, and Industrialized implementation of superparamagnetic magnetic resonance contrast agents. Background technique Magnetic Resonance Imaging (MRI) is the most important advanced medical imaging technology developed after the 1980s. It has outstanding advantages such as high resolution, multiple imaging parameters, and safe use. It has great potential in medical diagnosis and basic research. Huge application potential. MRI contrast agent is an imaging-enhanced contrast agent used to shorten imaging time and improve imaging contrast and clarity. It can change the relaxation rate of water protons in loc...
Claims
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More Application Information
Patent Timeline
Login to View More
Patent Type & Authority Patents(China)
IPC IPC(8): A61K49/06
Inventor 杨仕平张翠侠杨红田启威
Owner SHANGHAI NORMAL UNIVERSITY
Who we serve
- R&D Engineer
- R&D Manager
- IP Professional
Why Patsnap Eureka
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com